Skip to main content
Log in

Power-aware virtual optical network provisioning in flexible bandwidth optical networks [Invited]

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Considering the virtual network infrastructure as a service, optical network virtualization can facilitate the physical infrastructure sharing among different clients and applications that require optical network resources. Obviously, mapping multiple virtual network infrastructures onto the same physical network infrastructure is one of the greatest challenges related to optical network virtualization in flexible bandwidth optical networks. In order to efficiently address the virtual optical network (VON) provisioning problem, we can first obtain the virtual links’ order and the virtual nodes’ order based on their characteristics, such as the bandwidth requirement on virtual links and computing resources on virtual nodes. We then preconfigure the primary and backup paths for all node-pairs in the physical optical network, and the auxiliary graph is constructed by preconfiguring primary and backup paths. Two VON mapping approaches that include the power-aware virtual-links mapping (PVLM) approach and the power-aware virtual-nodes mapping (PVNM) approach are developed to reduce power consumption for a given set of VONs in flexible bandwidth optical networks with the distributed data centers. Simulation results show that our proposed PVLM approach can greatly reduce power consumption and save spectrum resources compared to the PVNM approach for the single-line rate and the mixed-line rate in flexible bandwidth optical networks with the distributed data centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang, A., Iyer, M., Dutta, R., Rouskas, G.N., Baldine, I.: Network virtualization: technologies, perspectives, and frontiers. IEEE/OSA J. Lightwave Technol. 31(4), 523–537 (2013)

    Article  Google Scholar 

  2. Peng, S., Nejabati, R., Simeonidou, D.: Role of optical network virtualization in cloud computing [Invited]. IEEE/OSA J. Opt. Commun. Netw. 5(10), A162–A170 (2013)

    Article  Google Scholar 

  3. Wang, X., Zhang, Q., Kim, I., Palacharla, P., Sekiya, M.: Virtual network provisioning over distance-adaptive flexible-grid optical networks [Invited]. IEEE/OSA J. Opt. Commun. Netw. 7(2), A318–A325 (2015)

    Article  Google Scholar 

  4. Jinno, M., Takara, H., Yonenaga, K., Hirano, A.: Virtualization in optical networks from network level to hardware level [Invited]. IEEE/OSA J. Opt. Commun. Netw. 5(10), A46–A56 (2013)

    Article  Google Scholar 

  5. Chen, B., Xie, W., Zhang, J., Jue, J.P., Zhao, Y., Huang, S., Gu, W.: Energy and spectrum efficiency with multi-flow transponders and elastic regenerators in survivable flexible bandwidth virtual optical networks. In: Proceedings of OFC/NFOEC, San Francisco, USA (2014)

  6. Xie, W., Jue, J.P., Zhang, Q., Wang, X., She, Q., Palacharla, P., Sekiya, M.: Survivable impairment-constrained virtual optical network mapping in flexible-grid optical networks. IEEE/OSA J. Opt. Commun. Netw. 6(11), 1008–1017 (2014)

    Article  Google Scholar 

  7. Yu, H., Wen, T., Di, H., Anand, V., Li, L.: Cost efficient virtual network mapping across multiple domains with joint intra-domain and inter-domain mapping. Opt. Switch. Netw. 14, 233–240 (2014)

    Article  Google Scholar 

  8. Zhang, S., Shi, L., Vadrevu, C.S.K., Mukherjee, B.: Network virtualization over WDM and flexible-grid optical networks. Opt. Switch. Netw. 10(4), 291–300 (2013)

    Article  Google Scholar 

  9. Pages, A., Perello, J., Spadaro, S., Junyent, G.: Strategies for virtual optical network allocation. IEEE Commun. Lett. 16(2), 268–271 (2012)

    Article  Google Scholar 

  10. Long, G., Zhu, Z.: Virtual optical network embedding (VONE) over elastic optical networks. IEEE/OSA J. Lightwave Technol. 32(3), 450–460 (2014)

    Article  MathSciNet  Google Scholar 

  11. Chowdhury, M., Rahman, M.R., Boutaba, R.: Vineyard: virtual network embedding algorithms with coordinated node and link mapping. IEEE/ACM Trans. Netw. 20(1), 206–219 (2012)

    Article  Google Scholar 

  12. Ye, Z., Patel, A.N., Ji, P.N., Qiao, C.: Survivable virtual infrastructure mapping with dedicated protection in transport software-defined networks [Invited]. IEEE/OSA J. Opt. Commun. Netw. 7(2), A183–A189 (2015)

    Article  Google Scholar 

  13. Guo, B., Qiao, C., Wang, J., Yu, H., Zuo, Y., Li, J., Chen, Z., He, Y.: Survivable virtual network design and embedding to survive a facility node failure. IEEE/OSA J. Lightwave Technol. 32(3), 483–493 (2014)

    Article  Google Scholar 

  14. Shen, G., Tucker, R.S.: Energy-minimized design for IP over WDM networks. IEEE/OSA J. Opt. Commun. Netw. 1(1), 176–186 (2009)

    Article  Google Scholar 

  15. Nonde, L., El-Gorashi, T.E.H., Elmirghani, J.M.H.: Energy efficient virtual network embedding for cloud networks. IEEE/OSA J. Lightwave Technol. 33(9), 1828–1849 (2015)

    Article  Google Scholar 

  16. Shen, G., Lui, Y., Bose, S.K.: “Follow the sun, follow the wind” lightpath virtual topology reconfiguration in IP over WDM network. IEEE/OSA J. Lightwave Technol. 32(11), 2094–2105 (2014)

    Article  Google Scholar 

  17. Manousakis, K., Angeletou, A., Varvarigos, E.: Energy efficient RWA strategies for WDM optical networks. IEEE/OSA J. Opt. Commun. Netw. 5(4), 338–348 (2013)

    Article  Google Scholar 

  18. Lui, Y., Shen, G., Shao, W.: Design for energy-efficient IP over WDM networks with joint lightpath bypass and router-card sleeping strategies. IEEE/OSA J. Opt. Commun. Netw. 5(11), 1122–1138 (2013)

    Article  Google Scholar 

  19. Zhang, J., Zhao, Y., Yu, X., Zhang, J., Song, M., Ji, Y., Mukherjee, B.: Energy-efficient traffic grooming in sliceable-transponder-equipped ip-over-elastic optical networks [Invited]. IEEE/OSA J. Opt. Commun. Netw. 7(1), A142–A152 (2015)

    Article  Google Scholar 

  20. Fallahpour, A., Beyranvand, H., Nezamalhosseini, S.A., Salehi, J.A.: Energy efficient routing and spectrum assignment with regenerator placement in elastic optical networks. IEEE/OSA J. Lightwave Technol. 32(10), 2019–2027 (2014)

    Article  Google Scholar 

  21. Zhang, H., Chen, B., Zhang, J.: A novel energy-efficiency algorithm in impairment-aware flexible-grid optical networks. In: Proceedings of ACP, Beijing, China (2013)

  22. Chen, B., Zhang, J., Zhao, Y., Shi, Y.: Energy-efficient virtual optical network mapping over converged data centers and elastic optical networks. In: Proceedings of ACP, Shanghai, China (2014)

Download references

Acknowledgments

Preliminary conference versions of this work appeared in the proceedings of ICOCN 2015, Nanjing, China. This work has been supported in part by Open Fund of IPOC (BUPT, IPOC2014B001), and State Key Laboratory of Advanced Optical Communication Systems and Networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bowen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B. Power-aware virtual optical network provisioning in flexible bandwidth optical networks [Invited]. Photon Netw Commun 32, 300–309 (2016). https://doi.org/10.1007/s11107-016-0609-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-016-0609-4

Keywords

Navigation