Skip to main content

Advertisement

Log in

A high-throughput energy-efficient passive optical datacenter network

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Datacenter applications impose heavy demands on bandwidth and also generate a variety of communication patterns (unicast, multicast, incast, and broadcast). Supporting such traffic demands leads to networks built with exorbitant facility costs and formidable power consumption if conventional design is followed. In this paper, we propose a novel high-throughput datacenter network that leverages passive optical technologies to efficiently support communications with mixed traffic patterns. Our network enables a dynamic traffic allocation that caters to diverse communication patterns at low power consumption. Specifically, our proposed network consists of two optical planes, each optimized for specific traffic patterns. We compare the proposed network with its optical and electronic counterparts and highlight its potential benefits in terms of facility costs and power consumption reductions. To avoid frame collisions, a high-efficiency distributed protocol is designed to dynamically distribute traffic between the two optical planes. Moreover, we formulate the scheduling process as a mixed integer programming problem and design three greedy heuristic algorithms. Finally, simulation results show that our proposed scheme outperforms the previous POXN architecture in terms of throughput and mean packet delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dean, J., Sanjay, G.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  2. Liu, H., Lam, C.F., Johnson, C.: Scaling optical interconnects in datacenter networks opportunities and challenges for WDM. In: 2010 18th IEEE Symposium High Performance Interconnects, pp. 113–116 (2010)

  3. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers in the wild. In: Proceedings of the ACM SIGCOMM Internet Measurement Conference, pp. 267–280 (2010)

  4. Benson, T., et al.: Understanding data center traffic characteristics. ACM SIGCOMM Comput. Commun. Rev. 40(1), 92–99 (2010)

    Article  Google Scholar 

  5. Wang, H., et al.: Rethinking the physical layer of data center networks of the next decade: using optics to enable efficient *-cast connectivity. ACM SIGCOMM Comput. Commun. Rev 43(3), 5358 (2013)

    Article  Google Scholar 

  6. Greenberg, A., et al.: VL2: a scalable and flexible data center network. In: Proceedings of the ACM SIGCOMM Data Communication, pp. 51–62 (2009)

  7. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. In: Proceedings of the ACM SIGCOMM Data Communication, pp. 63–74 (2008)

  8. Guo, C., et al.: BCube: a high performance, server-centric network architecture formodular data centers. In: Proceedings of the ACM SIGCOMM Confernece, pp. 339–350 (2010)

  9. Farrington, N., et al.: Helios: a hybrid electrical/optical switch architecture for modular data centers. In: Proceedings of the ACM SIGCOMM Conference, pp. 339–350 (2010)

  10. Wang, G., et al.: c-Through: part-time optics in data centers. In: Proceedings of the ACM SIGCOMM Conference, pp. 327–338 (2010)

  11. Singla, A., et al.: Proteus: a topology malleable data center network. In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks (2010)

  12. Kachris, C., Ioannis, T.: A survey on optical interconnects for data centers. Commun. Surv. Tutor. 14(4), 1021–1036 (2012)

    Article  Google Scholar 

  13. Kachris, C., Konstantinos, K., Ioannis, T.: Optical interconnection networks in data centers: recent trends and future challenges. Commun. Mag. 51(9), 39–45 (2013)

    Article  Google Scholar 

  14. Ni, W., Huang, C., et al.: POXN: a new passive optical cross-connection network for low-cost power-efficient datacenters. J. Lightwave Technol. 32(8), 14821500 (2014)

    Article  Google Scholar 

  15. Lavrova, O.A., Rossi, G., Blumenthal, D.J.: Rapid tunable transmitter with large number of ITU channels accessible in less than 5 ns. In: Proceedings of the 26th European Conference on Optical Communications, pp. 23–24 (2000)

  16. Lam, C.F. (ed.): Passive Optical Networks: Principles and Practice. Academic Press, Cambridge (2011)

    Google Scholar 

  17. Hasegawa, A., Kodama, Y.: Signal transmission by optical solitons in monomode fiber. Proc. IEEE 69(9), 1145–1150 (1981)

  18. Dumon, P., et al.: Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array. Opt. Express 14(2), 664–669 (2006)

    Article  Google Scholar 

  19. Cisco Nexus 3548 and 3524 Switches Data Sheet. Cisco Corp

  20. www.fiberstore.com/c/10g-sfp-plus_63

  21. Cisco 10GBASE SFP+ Modules Data Sheet. Cisco Corp

  22. Cisco 10GBASE Dense Wavelength-Division Multiplexing SFP+ Modules Data Sheet. Cisco Corp

  23. Hopps, C.E.: Analysis of an equal-cost multi-path algorithm (2000)

  24. Lam, C.F., et al.: Fiber optic communication technologies: what’s needed for datacenter network operations. IEEE Commun. Mag. 48(7), 32–39 (2010)

    Article  Google Scholar 

  25. Porter, G. et al.: Integrating Microsecond Circuit Switching into the Data Center, vol. 43, no. 4. ACM, New York (2013)

  26. Qiao, C., Yoo, M.: Optical burst switching (OBS)—a new paradigm dor an opitcal internet. J. High Speed Netw. 8, 69–84 (1999)

    Google Scholar 

  27. Xiong, Y., et al.: Control architecture in optical burst-switched WDM netowrks. IEEE J. Sel. Areas Commun. 18, 1838–1851 (2000)

    Article  Google Scholar 

  28. Crow, B.P., et al.: IEEE 802.11 wireless local area networks. Commun. Mag. 35(9), 116–126 (1997)

    Article  Google Scholar 

  29. Takagi, H.: Analysis and application of polling models. In: Haring, G., Lindemann, C., Reiser, M. (eds.) Performance Evaluation: Origins and Directions, pp. 423–442. Springer, Berlin (2000)

  30. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y., Huang, C. A high-throughput energy-efficient passive optical datacenter network. Photon Netw Commun 33, 258–274 (2017). https://doi.org/10.1007/s11107-016-0651-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-016-0651-2

Keywords

Navigation