Skip to main content

Advertisement

Log in

Energy efficient adaptive optical CDMA random access protocol based on particle swarm optimization

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, an energy efficient adaptive optical code division multiple access (OCDMA) random access protocol based on particle swarm optimization (PSO) is described. This protocol is based on the S-ALOHA with power and rate allocation based on PSO. This scheme evaluates jointly optimal power and rate allocation PSO based under the random access protocol as a new and simplified scheme for high performance, high energy efficiency suitable for OCDMA systems. The aim is to maximize the aggregate throughput, subject to predetermined quality of service restrictions and energy efficiency constraint in terms of the signal-to-noise-plus interference ratio of each user class. Numerical results are discussed taking into account realistic network operation scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wong, E.: Next-generation broadband access networks and technologies. J. Lightwave Technol. 30(4), 597–608 (2012)

    Article  Google Scholar 

  2. Valcarenghi, L., et al.: Energy efficiency in passive optical networks: where, when, and how? IEEE Netw. 26, 61–68 (2012)

  3. Mukai, H., Tano, F., Nakagawa, J.: Energy efficient 10G-EPON system. In: Proceedings of OFC/NFOEC, Anaheim, CA, March 2013, paper OW3G.1

  4. Tucker, R.S.: Green optical communications—part I: energy limitations in transport. J. Sel. Quantum Electron. 17(2), 245–260 (2011)

    Article  Google Scholar 

  5. Cvijetic, N., Qian, D., Hu, J.: 100 Gb/s optical access based on optical orthogonal frequency-division multiplexing. IEEE Commun. Mag. 48(7), 70–77 (2010)

    Article  Google Scholar 

  6. Effenberger, F.J.: The XG-PON system: cost effective 10 Gb/s access. J. Lightwave Technol. 29(4), 403–409 (2011)

    Article  Google Scholar 

  7. Fouli, K., Maier, M.: Ocdma and optical coding: principles, applications, and challenges. IEEE Commun. Mag. 45(8), 27–34 (2007)

    Article  Google Scholar 

  8. Yin, H., Richardson, D.J.: Optical Code Division Multiple Access Communication Networks: Theory and Applications. Springer, Berlin (2009)

    Google Scholar 

  9. Kamath, P., Touch, J.D., Bannister, J.A.: The need for media access control in optical CDMA networks. In: Proceedings of IEEE Conference Computer Communications (Infocom ’04), pp. 2208–2219, March 2004

  10. Raad, R., Inaty, E., Fortier, P., Shalaby, H.M.H.: Optimal resource allocation scheme in a multirate overlapped optical CDMA system. J. Lightwave Technol. 25(8), 2044–2053 (2007)

    Article  Google Scholar 

  11. Inaty, E., Raad, R., Fortier, P., Shalaby, H.M.H.: A fair QoS-based resource allocation scheme for a time-slotted optical OV-CDMA packet networks: a unified approach. J. Lightwave Technol. 26(21), 1–10 (2009)

    Google Scholar 

  12. Khaleghi, S., Pakravan, M.R.: Quality of service provisioning in optical CDMA packet networks. J. Opt. Commun. Netw. 2(5), 283–292 (2010)

    Article  Google Scholar 

  13. Inaty, E., Raad, R., Fortier, P., Shalaby, H.M.H.: Performance comparison between S-ALOHA and R\(^{3}\)T protocols for multirate OFFH-CDMA systems in optical packet networks. J. Opt. Netw. 5(12), 927–936 (2006)

  14. Durand, F.R., Filho, M.S., Abrão, T.: The effects of power control on the optical CDMA random access protocol. Opt. Switch. Netw. 9(1), 52–60 (2012)

    Article  Google Scholar 

  15. Tang, M., Long, C., Guan, X.: Nonconvex optimization for power control in wireless CDMA networks. Wirel. Pers. Commun. 58(4), 851–865 (2011)

    Article  Google Scholar 

  16. Durand, F., Abrão, T.: Energy-efficient power allocation for WDM/OCDM networks with particle swarm optimization. J. Opt. Commun. Netw. 5(5), 512–523 (2013)

    Article  Google Scholar 

  17. Kwong, W.C., Yang, G.-C.: Multiple-length extended carrier-hopping prime codes for optical CDMA systems supporting multirate multimedia services. J. Lightwave Technol. 23(12), 3653–3662 (2009)

    Google Scholar 

  18. Shalaby, H.M.H.: Optical CDMA random access protocols with and without pretransmission coordination. J. Lightwave Technol. 21, 2455–2462 (2003)

    Article  Google Scholar 

  19. Shalaby, H.M.H.: Performance analysis of an optical CDMA random access protocol. J. Lightwave Technol. 22(5), 1233–1241 (2004)

    Article  Google Scholar 

  20. Mohamed, M.A.A., Shalaby, H.M.H., El-Badawy, E.A.: Performance analysis of an optical CDMA MAC protocol with variable-size sliding window. J. Lightwave Technol. 24(10), 3590–3597 (2006)

    Article  Google Scholar 

  21. Mohamed, M.A.A., Shalaby, H.M.H., El-Badawy, E.A.: Optical code-division multiple-access protocol with selective retransmission. SPIE Opt. Eng. 45(5), 055007(1–8) (2006)

    Google Scholar 

  22. El-Sahn, Z.A., Abd-El-Malek, Y.M., Shalaby, H.M.H., El-Badawy, E.A.: Performance of the R\(^{3}\)T random-access OCDMA protocol in noisy environment. IEEE J. Sel. Top. Quantum Electron. 13, 1396–1402 (2007)

    Article  Google Scholar 

  23. Raad, R., Inaty, E., Fortier, P., Shalaby, H.M.H.: Optical S-ALOHA/CDMA systems for multirate applications: architecture, performance evaluation, and system stability. J. Lightwave Technol. 24, 1968–1977 (2006)

    Article  Google Scholar 

  24. Sun, S., Yin, H., Wang, Z., Xu, A.: Performance analysis of a new random access protocol for OCDMA networks. Photon Netw. Commun. 14(1), 89–995 (2007)

    Article  Google Scholar 

  25. Shoaie, M.A.: Performance analysis of slotted ALOHA random access packet-switching optical CDMA networks using generalized optical orthogonal codes and M-ary overlapping PPM signaling. J. Opt. Netw. 3(7), 568–576 (2011)

    Article  Google Scholar 

  26. Brès, C.-S., Prucnal, P.R.: Code-empowered lightwave networks. J. Lightwave Technol. 25(10), 2911–2921 (2007)

    Article  Google Scholar 

  27. Shannon, C.E.: The mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). (reprinted with corrections 1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tarhuni, N., Korhonen, T., Elmusrati, M., Mutafungwa, E.: Power control of optical CDMA star networks. Opt. Commun. 259, 655–664 (2006)

    Article  Google Scholar 

  29. Forney, G.D., Ungerboeck, G.: Modulation and coding for linear Gaussian channels. IEEE Trans. Inf. Theory 44(6), 2384–2415 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sampaio, L., Abrão, T., Angelico, B., Lima, M., Proença, M., Jeszensky, P.: Hybrid haceuristic-waterfilling game theory approach in MC-CDMA resource allocation. Appl. Soft Comput. 12, 1902–1912 (2011)

    Article  Google Scholar 

  31. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  32. Durand, F., Angelico, T., Abrão, T.: Delay and estimation uncertainty in distributed power control algorithm for optical CDMA networks. Opt. Switch. Netw. 21, 67–78 (2016)

    Article  Google Scholar 

  33. Aurzada, F., Scheutzow, M., Reisslein, M., Ghazisaidi, N., Maier, M.: Capacity and delay analysis of next-generation passive optical networks (NG-PONs). IEEE Trans. Commun. 59(5), 1378–1388 (2011)

    Article  Google Scholar 

  34. Miyata, S., Baba, K., Yamaoka, K., Kinoshita, H.: Exact mean packet delay analysis for long-reach passive optical networks. In: 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6

  35. Rad, M.M., Fathallah, H., Rusch, L.A.: Fiber fault PON monitoring using optical coding: effects of customer geographic distribution. IEEE Trans. Commun. 58(4), 1172–1181 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Renan Durand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durand, F.R., Abrão, T. Energy efficient adaptive optical CDMA random access protocol based on particle swarm optimization. Photon Netw Commun 33, 275–289 (2017). https://doi.org/10.1007/s11107-016-0652-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-016-0652-1

Keywords

Navigation