Skip to main content
Log in

Silicon micro-ring resonator-based all-optical digital-to-analog converter

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

All-optical N-bit digital-to-analog converter based on silicon microring resonators (MRRs) and \(1\times 2\) optical splitters, which can convert N-bit optical digital signal to an optical analog signal, is proposed and described in this paper. We design and simulate 2-bit digital-to-analog converter based on two MRRs and two \(1\times 2\) optical splitters. Two optical pump signals represent the two operands of the logical operations to modulate the two MRRs. The proposed silicon MRRs has high extinction ratios of 16.94 and 15.98 dB at very low pump powers of 1.76 and 1.82 mW, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brzozowski, L., Sargent, E.H.: All-optical analog-to-digital converters, hardlimiters, and logic gates. J. Lightwave Technol. 19, 114–119 (2001)

  2. Saida, T., Okamoto, K., Uchiyama, K., Takiguchi, K., Shibata, T., Sugita, A.: Integrated optical digital-to-analogue converter and its application to pulse pattern recognition. Electron. Lett. 37(20), 1237–1238 (2001)

    Article  Google Scholar 

  3. Yacoubian, A., Das, P.K.: Digital-to-analog conversion using electrooptic modulators. IEEE Photon. Technol. Lett. 15, 117–119 (2003)

    Article  Google Scholar 

  4. Oda, S., Maruta, A.: All-optical digital-to-analog conversion using nonlinear optical loop mirrors. IEEE Photon. Technol. Lett. 18(5), 703–705 (2006)

    Article  Google Scholar 

  5. Liao, J., Wen, H., Zheng, X., Xiang, P., Zhang, H., Zhou, B.: Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection. IEEE Photon. Technol. Lett. 25(2), 126–128 (2013)

    Article  Google Scholar 

  6. Yu, X., Wang, K., Zheng, X., Zhang, H.: Incoherent photonic digital-to-analogue converter based on broadband optical source. Electron. Lett. 43(19), 1 (2007)

    Article  Google Scholar 

  7. Peng, Y., Zhang, H., Zhang, Y., Yao, M.: Photonic digital-to-analog converter based on summing of serial weighted multiwavelength pulses. IEEE Photon. Technol. Lett. 20(24), 2135–2137 (2008)

    Article  Google Scholar 

  8. Chen, Y. K., Leven, A., Hu, T., Weimann, N., Kopf, R., Tate, A.: Integrated photonic digital-to-analog converter for arbitrary waveform generation. In: 2008 International Conference on Photonics in Switching (2008, August) (2008)

  9. Kondratko, P.K., Leven, A., Chen, Y.K., Lin, J., Koc, U.V., Tu, K.Y., Lee, J.: 12.5-GHz optically sampled interference-based photonic arbitrary waveform generator. IEEE Photon. Technol. Lett. 17(12), 2727–2729 (2005)

    Article  Google Scholar 

  10. Nishitani, T., Konishi, T., Furukawa, H., Itoh, K.: All-optical digital-to-analog conversion using pulse pattern recognition based on optical correlation processing. Opt. Express 13(25), 10310–10315 (2005)

    Article  Google Scholar 

  11. Jeong, J.-M., Marhic, M.E.: All-optical analog-to-digital and digital-to-analog conversion implemented by a nonlinear fiber interferometer. Opt. Commun. 91(12), 115–122 (1992)

    Article  Google Scholar 

  12. Fard, A., Gupta, S., Jalali, B.: Digital broadband linearization technique and its application to photonic time-stretch analog-to-digital converter. Opt. Lett. 36(7), 1077–1079 (2011)

    Article  Google Scholar 

  13. Liao, J., Wen, H., Zheng, X., Zhang, H., Guo, Y., Zhou, B.: Novel 2N bit bipolar photonic digital-to-analog converter based on optical DQPSK modulation coupled with differential detection. Opt. Lett. 37(9), 1502–1504 (2012)

    Article  Google Scholar 

  14. Liao, J., Wen, H., Zheng, X., Xiang, P., Zhang, H., Zhou, B.: Novel bipolar photonic digital-to-analog conversion employing differential phase shift keying modulation and balanced detection. IEEE Photon. Technol. Lett. 25(2), 126–128 (2013)

    Article  Google Scholar 

  15. Yang, L., Ding, J., Chen, Q., Zhou, P., Zhang, F., Zhang, L.: Demonstration of a 3-bit optical digital-to-analog converter based on silicon microring resonators. Opt. Lett. 39(19), 5736–5739 (2014)

    Article  Google Scholar 

  16. Soref, R.: The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006)

    Article  Google Scholar 

  17. Little, B.E., Foresi, J.S., Steinmeyer, G., Thoen, E.R., Chu, S.T., Haus, H., Ippen, E.P., Kimerling, L.C., Greene, W.: Ultra-compact Si–SiO microring resonator optical channel dropping filters. IEEE Photon. Technol. Lett. 10(4), 549–551 (1998)

    Article  Google Scholar 

  18. Xu, Q., Soref, R.: Reconfigurable optical directed-logic circuits using microresonator-based optical switches. Opt. Express 19(6), 5244–5259 (2011)

    Article  Google Scholar 

  19. Yang, L., Zhang, L., Guo, C., Ding, J.: XOR and XNOR operations at 12.5 Gb/s using cascaded carrier-depletion microring resonators. Opt. Express 22(3), 2996–3012 (2014)

    Article  Google Scholar 

  20. Chen, S., Zhang, L., Fei, Y., Cao, T.: Bistability and self-pulsation phenomena in silicon microring resonators based on nonlinear optical effects. Opt. Express 20(7), 7454–7468 (2012)

    Article  Google Scholar 

  21. Chen, Q., Zhang, F., Zhang, L., Tian, Y., Zhou, P., Ding, J., Yang, L.: 1 Gbps directed optical decoder based on two cascaded microring resonators. Opt. Lett. 39(14), 4255–4258 (2014)

    Article  Google Scholar 

  22. Rakshit, J.K., Roy, J.N.: Micro-ring resonator based all-optical reconfigurable logic operations. Opt. Commun. 321, 38–46 (2014)

    Article  Google Scholar 

  23. Rakshit, J.K., Roy, J.N., Chattopadhyay, T.: A theoretical study of all optical clocked D flip flop using single micro-ring resonator. J. Comput. Electron. 13(1), 278–286 (2014)

    Article  Google Scholar 

  24. Almeida, V.R., Xu, Q., Lipson, M.: Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect. Opt. Lett. 30(18), 2403–2405 (2005)

    Article  Google Scholar 

  25. Chun-Fei, L., Na, D.: Optical switching in silicon nanowaveguide ring resonators based on Kerr effect and TPA effect. Chin. Phys. Lett. 26(5), 054203 (2009)

    Article  Google Scholar 

  26. Ding, J., Zhang, F., Zhu, W., Zhou, P., Chen, Q., Zhang, L., Yang, L.: Optical digital to analog converter based on microring switches. IEEE Photon. Technol. Lett. 26(20), 2066–2069 (2014)

    Article  Google Scholar 

  27. Houbavlis, T., Zoiros, K.E.: SOA-assisted Sagnac switch and investigation of its roadmap from 10 to 40 GHz. Opt. Quantum Electron. 35(13), 1175–1203 (2003)

    Article  Google Scholar 

  28. Zoiros, K., et al.: Experimental and theoretical studies of a high repetition rate fiber laser, mode-locked by external optical modulation. Opt. Commun. 180, 301–315 (2000)

    Article  Google Scholar 

  29. Zoiros, K.E., et al.: Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac interferometer. Opt. Commun. 258(2), 114–134 (2006)

    Article  Google Scholar 

  30. Houbavlis, T., Zoiros, K.E., Kanellos, G., Tsekrekos, C.: Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach-Zehnder Interferometer. Opt. Commun. 232(1–6), 179–199 (2004)

    Article  Google Scholar 

  31. Verma, N., Mandal, S.: Performance analysis of optical micro-ring resonator as all-optical reconfigurable logic and multiplexer in Z-domain. J. Nonlinear Opt. Phys. Mater. 25(01), 1650013 (2016)

    Article  Google Scholar 

  32. Wang, Q., Zhu, G., Chen, H., Jaques, J., Leuthold, J., Piccirilli, A.B., Dutta, N.K.: Study of all optical XOR using Mach–Zehnder interferometer and differential scheme. IEEE J. Quantum Electron. 40(6), 703–710 (2004)

  33. Hinton, K., Raskutti, G., Farrell, P.M., Tucker, R.S.: Switching energy and device size limits on digital photonic signal processing technologies. IEEE J. Sel. Top. Quantum Electron. 14(3), 938–945 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Kumar Rakshit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakshit, J.K., Roy, J.N. Silicon micro-ring resonator-based all-optical digital-to-analog converter. Photon Netw Commun 34, 84–92 (2017). https://doi.org/10.1007/s11107-016-0664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-016-0664-x

Keywords

Navigation