Skip to main content
Log in

MCRB for timing, phase and frequency estimation in presence of self-phase modulation for low-rate optical communication

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper we derive the theoretical lower bound, namely Modified Cramér-Rao bound (MCRB) for symbol timing, phase and frequency offset in presence of nonlinear self-phase modulation (SPM) in a dispersion compensated long-haul coherent fiber link. The system model considers multiple span of fiber each associated with optical amplifier. Dual polarization multilevel quadrature amplitude modulation is opted for data transmission to support the data rate lower than 10 Gigabaud. We find that SPM induces underdamped oscillation on the MCRB bounds depending on the pulse shapes (symmetric and asymmetric) utilized. In presence of realistic low-pass filter at the receiver front end, the MCRB degrades significantly due to SPM. We also show the effect of SPM on symbol error rate degradation. Simulation is carried out with symmetric return-to-zero pulse with duty cycles of 33, 67 % and self-generated asymmetric pulse to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Using \({\displaystyle \sum _{k=-\infty }^{+\infty }}\left| p(\xi _{n,k})\right| ^{3}\dot{p}(\xi _{n,k})=1/T\intop _{-\infty }^{{+\infty }}\left| p(t)\right| ^{3}\dot{p}(t)\mathrm {d}t\).

References

  1. Agrawal, G.: Applications of Nonlinear Fiber Optics. Academic Press, Elsevier (2001)

    Google Scholar 

  2. Stolen, R., Lin, C.: Self-phase-modulation in silica optical fibers. Phys. Rev. A 17(4), 1448 (1978)

    Article  Google Scholar 

  3. Irukulapati, N.V., Marsella, D., Johannisson, P., Agrell, E., Secondini, M., Wymeersch, H.: Stochastic digital backpropagation with residual memory compensation. J. Lightwave Technol. 34(2), 566–572 (2016)

    Article  Google Scholar 

  4. Irukulapati, N.V., Wymeersch, H., Johannisson, P., Agrell, E.: Stochastic digital backpropagation. IEEE Trans. Commun. 62(11), 3956–3968 (2014)

    Article  Google Scholar 

  5. Du, L.B., Rafique, D., Napoli, A., Spinnler, B., Ellis, A.D., Kuschnerov, M., Lowery, A.J.: Digital fiber nonlinearity compensation: toward 1-tb/s transport. IEEE Signal Process. Mag. 31(2), 46–56 (2014)

    Article  Google Scholar 

  6. Lau, A.P.T., Kahn, J.M., et al.: Design of inline amplifier gains and spacings to minimize the phase noise in optical transmission systems. J. Lightwave Technol. 24(3), 1334 (2006)

    Article  Google Scholar 

  7. Ip, E., Kahn, J.M.: Compensation of dispersion and nonlinear impairments using digital backpropagation. J. Lightwave Technol. 26(20), 3416–3425 (2008)

    Article  Google Scholar 

  8. Zibar, D., Zibar, D., Bianciotto, A., Wang, Z., Napoli, A., Spinnler, B.: Analysis and dimensioning of fully digital clock recovery for 112 gb/s coherent polmux QPSK systems. In: ECOC 2009 (2009)

  9. Hauske, F., Xie, C., Stojanovic, N., Chen, M.: Analysis of polarization effects to digital timing recovery in coherent receivers of optical communication systems. In: 2010 ITG Symposium on VDE Photonic Networks, 2010, pp. 1–3 (2010)

  10. Ip, E., Kahn, J.M.: Feedforward carrier recovery for coherent optical communications. J. Lightwave Technol. 25(9), 2675–2692 (2007)

    Article  Google Scholar 

  11. Nakagawa, T., Matsui, M., Kobayashi, T., Ishihara, K., Kudo, R., Mizoguchi, M., Miyamoto, Y.: Non-data-aided wide-range frequency offset estimator for qam optical coherent receivers. In: Optical Fiber Communication Conference. Optical Society of America, p. OMJ1 (2011)

  12. Meyr, H., Moeneclaey, M., Fechtel, S.: Digital Communication Receivers. Wiley Online Library, New York (1998)

    Google Scholar 

  13. D’Andrea, A.N., Mengali, U., Reggiannini, R.: The modified Cramer-Rao bound and its application to synchronization problems. IEEE Trans. Commun. 42(234), 1391–1399 (1994)

    Article  Google Scholar 

  14. Tan, A.S., Wymeersch, H., Johannisson, P., Sjödin, M., Agrell, E., Andrekson, P., Karlsson, M.: The impact of self-phase modulation on digital clock recovery in coherent optical communication. In: Proceedings of European Conference on Optical Communication, ECOC 2010, Turin, Italy, September 19–23, 2010 (2010)

  15. Sen, D., Wymeersch, H., Irukulapati, N.V., Agrell, E., Johannisson, P., Karlsson, M., Andrekson, P., et al.: MCRB for timing and phase offset for low-rate optical communication with self-phase modulation. IEEE Commun. Lett. 17(5), 1004–1007 (2013)

    Article  Google Scholar 

  16. Sen, D.: MCRB for synchronization parameters offset in the presence of self-phase modulation in coherent optical communication. In: IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), pp. 1–6 (2015)

  17. Ho, K.-P.: Probability density of nonlinear phase noise. JOSA B 20(9), 1875–1879 (2003)

    Article  Google Scholar 

  18. Ho, K.-P., Kahn, J.M.: Electronic compensation technique to mitigate nonlinear phase noise. J. Lightwave Technol. 22(3), 779–783 (2004)

    Article  Google Scholar 

  19. Beygi, L., Agrell, E., Karlsson, M., Johannisson, P.: Signal statistics in fiber-optical channels with polarization multiplexing and self-phase modulation. J. Lightwave Technol. 29(16), 2379–2386 (2011)

    Article  Google Scholar 

  20. Shtaif, M.: Analytical description of cross-phase modulation in dispersive optical fibers. Opt. Lett. 23(15), 1191–1193 (1998)

    Article  Google Scholar 

  21. Marhic, M., Kagi, N., Chiang, T.-K., Kazovsky, L.: Broadband fiber optical parametric amplifiers. Opt. Lett. 21(8), 573–575 (1996)

    Article  Google Scholar 

  22. Ip, E., Kahn, J.M.: Power spectra of return-to-zero optical signals. J. Lightwave Technol. 24(3), 1610–1618 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Prof. M. Karlsson, Prof. Erik Agrell, Prof. Henk Wymeersch, and other members of FORCE, Chalmers University of Technology for their comments and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debarati Sen.

Appendices

Appendix 1: Derivation of Fisher information for symmetric pulse without LPF

Derivation of \(F_{\theta \tau }=F_{\tau \theta }\): we see that

$$\begin{aligned}&{\mathbb {E}}\left[ \mathfrak {R}\left\{ \frac{\partial \tilde{\mathbf {x}}_{k}^{H}}{\partial \theta } \frac{\partial \tilde{\mathbf {x}}_{k}}{\partial \tau }\right\} \right] \nonumber \\&\quad =-2\beta A^{2}\sum _{n=-(N-1)/2}^{(N-1)/2}E_{4}\left| p(\xi _{n,k})\right| ^{3}\dot{p}(\xi _{n,k}), \end{aligned}$$
(51)

In (51) we used the fact that data symbols are i.i.d. and introduced \(E_{l}={\mathbb {E}}\left\{ \left\| \mathbf {S}_{n}\right\| ^{l}\right\} \). The same reasoning will be followed to derive the other components of FIM. Therefore,Footnote 1 \(F_{\theta \tau }\) is given as

$$\begin{aligned} F_{\theta \tau }=\frac{-4\beta A^{2}}{N_{a}N_{0}/T}{\displaystyle \sum _{k=-\infty }^{+\infty }}\sum _{n=-(N-1)/2}^{(N-1)/2}E_{4}\left| p(\xi _{n,k})\right| ^{3}\dot{p}(\xi _{n,k}) \end{aligned}$$
(52)

Note that \(F_{\theta \tau }=F_{\tau \theta }=0\) whenever the system is linear (i.e., \(\gamma =0\)) or whenever the pulse p(t) is even.

1.1 Derivation of \(F_{\theta \theta }\) and \(F_{\tau \tau }\)

Using similar reasoning, \(F_{\theta \theta }\) is given as

$$\begin{aligned} F_{\theta \theta } = \frac{2A}{N_{a}N_{0}/T}{\displaystyle \sum _{k=-\infty }^{+\infty }}{\displaystyle \sum _{n=-(N-1)/2}^{(N-1)/2}E_{2}\left| p(kT-nT_{s}-\tau )\right| ^{2}} \end{aligned}$$
(53)

Finally, it is easily shown that

$$\begin{aligned}&{\mathbb {E}}\left\{ \frac{\partial \tilde{\mathbf {x}}_{k}^{H}}{\partial \tau } \frac{\partial \tilde{\mathbf {x}}_{k}}{\partial \tau }\right\} \nonumber \\&\quad =A{\displaystyle \sum _{n=-(N-1)/2}^{(N-1)/2}} \left| \dot{p}(\xi _{n,k})\right| ^{2}\left( 2+4\beta ^{2}A^{2}E_{6} \left| p(\xi _{n,k})\right| ^{4}\right) .\nonumber \\ \end{aligned}$$
(54)

Then, \(F_{\tau \tau }\) is given as

$$\begin{aligned} F_{\tau \tau }=\frac{4AN}{N_{a}N_{0}}I_{02} +8\frac{\gamma ^{2}L_{\mathrm {eff}}^{2}N_{a}A^{3}E_{6}N}{N_{0}}I_{42}. \end{aligned}$$
(55)

1.2 Derivation of \(F_{\theta \epsilon }=F_{\epsilon \theta }\)

Deriving \(\frac{\partial \tilde{\mathbf {x}}_{k}^{H}}{\partial \theta }\) from (12) we find that

$$\begin{aligned} F_{\theta \epsilon }= & {} \frac{2}{N_{a}N_{0}/T}{\displaystyle \sum _{k=-\infty }^{+\infty }}\left\{ AkT\sum _{n=-(N-1)/2}^{(N-1)/2}E_{2}\left| p(\xi _{n,k})\right| ^{2}\right\} \nonumber \\= & {} \frac{2ANE_{2}}{N_{a}N_{0}}\intop _{-\infty }^{+\infty }(t+nT_{s}+\tau ) \left| p(t)\right| ^{2}\mathrm {d}t\nonumber \\= & {} \frac{2ANE_{2}}{N_{a}N_{0}}\intop _{-\infty }^{+\infty }(t+\tau ) \left| p(t)\right| ^{2}\mathrm {d}t\nonumber \\= & {} \frac{4AN}{N_{a}N_{0}}\left[ K_{12}+\tau K_{02}\right] . \end{aligned}$$
(56)

In (56) we use the fact that \(K_{kl0}=K_{kl}\). Alternatively, in frequency domain \(F_{\theta \epsilon }\) can be given as

$$\begin{aligned} F_{\theta \epsilon }= & {} \frac{4AN}{N_{a}N_{0}}\left[ \tau \intop _{-1/T}^{+1/T}\left| P(f)\right| ^{2}\mathrm {d}f\right. \nonumber \\&\left. +\frac{1}{2\pi }\mathrm {Im}\intop _{-1/T}^{+1/T} \left( \frac{\partial }{\partial f}\, P^{*}(f)\right) P(f)\,\mathrm {d}f\right] .\nonumber \\ \end{aligned}$$
(57)

1.3 Derivation of \(F_{\epsilon \tau }=F_{\tau \epsilon }\)

It can be easily seen from (14) that

$$\begin{aligned}&\frac{\partial \tilde{\mathbf {x}}_{k}^{H}}{\partial \epsilon } =-jkTe^{-j\theta }e^{-j\epsilon kT}\sqrt{A}\nonumber \\&\quad {\displaystyle \sum _{m=-(N-1)/2}^{(N-1)/2}\mathbf {S}_{m}p(\xi _{m,k})} \exp \left[ -j\beta A\left\| {\displaystyle \mathbf {S}}_{m}\right\| ^{2}\left| p(\xi _{m,k})\right| ^{2}\right] .\nonumber \\ \end{aligned}$$
(58)

Hence, using (13) and (58) we obtain

$$\begin{aligned}&{\mathbb {E}}\left\{ \frac{\partial \tilde{\mathbf {x}}_{k}^{H}}{\partial \epsilon } \frac{\partial \tilde{\mathbf {x}}_{k}}{\partial \tau }\right\} =AkT\Biggl [{\displaystyle \sum _{n=-(N-1)/2}^{(N-1)/2}}jE_{2}\dot{\,p}(\xi _{n,k})\,p(\xi _{n,k})\nonumber \\&\quad -2\beta AE_{4}\left| p(\xi _{n,k})\right| ^{3}\dot{\,p}(\xi _{n,k})\Biggr ]. \end{aligned}$$
(59)

Therefore,

$$\begin{aligned}&{\mathbb {E}}\left[ \mathfrak {R}\left\{ \frac{\partial \tilde{\mathbf {x}}_{k}^{H}}{\partial \epsilon } \frac{\partial \tilde{\mathbf {x}}_{k}}{\partial \tau }\right\} \right] \nonumber \\&\quad =-2\beta A^{2}E_{4}kT{\displaystyle \sum _{n=-(N-1)/2}^{(N-1)/2}\left| p(\xi _{n,k})\right| ^{3}\dot{\, p}(\xi _{n,k}).} \end{aligned}$$
(60)

Then, \(F_{\epsilon \tau }\) is given as

$$\begin{aligned} F_{\epsilon \tau }= & {} \frac{-4\beta A^{2}NE_{4}}{N_{a}N_{0}}\intop _{-\infty }^{+\infty }(t+\tau )\left| p(t)\right| ^{3}\dot{\, p}(t)\,\mathrm {d}t \end{aligned}$$
(61)

It is obvious that \(F_{\epsilon \tau }=F_{\tau \epsilon }=0\) whenever p(t) is even and the system is linear, i.e., \(\gamma =0\). Alternatively, \(F_{\epsilon \tau }\) in frequency domain is

$$\begin{aligned} F_{\epsilon \tau }= & {} \frac{-4\beta A^{2}NE_{4}}{N_{a}N_{0}}\Biggl \{\intop _{-1/T}^{1/T}f \left| P(f)\right| ^{3}\left( \frac{\partial }{\partial f}\,P(f)\right) \mathrm {d}f\nonumber \\&+\tau 2\pi \mathrm {Im}\intop _{-\infty }^{+\infty }f \left| P(f)\right| ^{3}P(f)\mathrm {d}f\Biggr \}. \end{aligned}$$
(62)

1.4 Derivation of \(F_{\epsilon \epsilon }\)

Using (58) and (14) we derive \(F_{\epsilon \epsilon }\) as

$$\begin{aligned} F_{\epsilon \epsilon }= & {} \frac{2AE_{2}}{N_{a}N_{0}}\Biggl [\frac{(N^{2}-1)N}{12}T_{s}^{2} \intop _{-\infty }^{+\infty }\left| p(t)\right| ^{2}dt+N\tau ^{2}\nonumber \\&\times \intop _{-\infty }^{+\infty }\left| p(t)\right| ^{2}dt +N\intop _{-\infty }^{+\infty }t^{2}\left| p(t)\right| ^{2}dt\nonumber \\&+\,2\tau N\intop _{-\infty }^{+\infty }t\left| p(t)\right| ^{2}dt\Biggr ] \end{aligned}$$
(63)

An alternative frequency domain interpretation of (63) is

$$\begin{aligned} F_{\epsilon \epsilon }= & {} \frac{2ANE_{2}}{N_{a}N_{0}(2\pi )^{2}} \Biggl [\intop _{-1/T}^{1/T}\left| \frac{\partial }{\partial f}\, P(f)\right| ^{2}\mathrm {d}f\nonumber \\&+\,\frac{(N^{2}-1)}{12}T_{s}^{2}4\pi ^{2} \intop _{-1/T}^{1/T}\left| P(f)\right| ^{2}\mathrm {d}f +4\pi \tau \,\nonumber \\&\times \,\mathrm {Im}\intop _{-1/T}^{+1/T}\left( \frac{\partial }{\partial f}\, P(f)\right) P^{*}(f)\,\mathrm {d}f\nonumber \\&+\,4\pi ^{2}\tau ^{2}\intop _{-1/T}^{1/T}\left| P(f)\right| ^{2}\mathrm {d}f\Biggr ]. \end{aligned}$$
(64)

Appendix 2: Derivation of Fisher information for asymmetric pulse without LPF

We start with derivation of determinant of \(\mathbf {F}(\varvec{\Theta })\) (26)

$$\begin{aligned} \mathrm {det}(\mathrm {\mathbf {\mathbf {F}(\varvec{\Theta })})}= & {} F_{\epsilon \epsilon }F_{\theta \theta }F_{\tau \tau }+2F_{\epsilon \tau }F_{\theta \tau } F_{\theta \epsilon }\nonumber \\&-\,F_{\theta \tau }^{2}F_{\epsilon \epsilon }-F_{\theta \epsilon }^{2} F_{\tau \tau }-F_{\epsilon \tau }^{2}F_{\theta \theta }. \end{aligned}$$
(65)

We introduce \(A_{1,\beta }=I_{02}+2\beta ^{2}AE_{6}I_{42}\), \(A_{2}=K_{22}+2\tau K_{12}+\tau ^{2}K_{02}\), \(A_{3}=K_{131}+\tau J_{31}\), and \(A_{4}=K_{12}+\tau K_{02}\). Then,

$$\begin{aligned}&F_{\epsilon \epsilon }F_{\theta \theta }F_{\tau \tau }= \left( \frac{4AN}{N_{a}N_{0}}\right) ^{3}A_{1,\beta }A_{2}, \end{aligned}$$
(66)
$$\begin{aligned}&F_{\epsilon \tau }F_{\theta \tau }F_{\theta \epsilon }= \frac{64\beta ^{2}A^{5}N^{3}E_{4}^{2}J_{31}}{(N_{a}N_{0})^{3}}A_{3}A_{4}, \end{aligned}$$
(67)
$$\begin{aligned}&F_{\theta \tau }^{2}F_{\epsilon \epsilon }=\frac{64 \beta ^{2}A^{5}N^{3}E_{4}^{2}J_{31}^{2}}{(N_{a}N_{0})^{3}}A_{2}, \end{aligned}$$
(68)
$$\begin{aligned}&F_{\theta \epsilon }^{2}F_{\tau \tau }=\frac{(4AN)^{3}}{(N_{a}N_{0})^{3}}A_{1,\beta }A_{4}^{2}, \end{aligned}$$
(69)

and

$$\begin{aligned} F_{\epsilon \tau }^{2}F_{\theta \theta }=\frac{64\beta ^{2}A^{5} N^{3}E_{4}^{2}}{(N_{a}N_{0})^{3}}A_{3}^{2}. \end{aligned}$$
(70)

Hence,

$$\begin{aligned} \mathrm {det}(\mathbf {F}(\varvec{\Theta }))= & {} \frac{(4AN)^{3}}{(N_{a}N_{0})^{3}} \Bigl [A_{1,\beta }(A_{2}-A_{4}^{2})\nonumber \\&+\,\beta ^{2}A^{2}E_{4}^{2}\left( J_{31}A_{3}A_{4}-J_{31}^{2}A_{2}-A_{3}^{2}\right) \Bigr ].\nonumber \\ \end{aligned}$$
(71)

The diagonal elements of \(\mathrm {\mathbf {F}}^{-1}(\varvec{\Theta })\) in (25) are then obtained as

$$\begin{aligned} B= & {} F_{\theta \theta }F_{\tau \tau }-F_{\theta \tau }^{2}\nonumber \\= & {} \frac{(4AN)^{2}}{(N_{a}N_{0})^{2}}\left[ A_{1,\beta } -\beta ^{2}A^{3}E_{4}^{2}J_{31}^{2}\right] , \end{aligned}$$
(72)
$$\begin{aligned} F= & {} F_{\epsilon \epsilon }F_{\tau \tau }-F_{\epsilon \tau }^{2} \nonumber \\= & {} \frac{(4AN)^{2}}{(N_{a}N_{0})^{2}} \left[ A_{1,\beta }A_{2}-\beta ^{2}A^{3}E_{4}^{2}A_{3}^{2}\right] , \end{aligned}$$
(73)
$$\begin{aligned} O= & {} F_{\epsilon \epsilon }F_{\theta \theta }-F_{\theta \epsilon }^{2} = \frac{(4AN)^{2}}{(N_{a}N_{0})^{2}}\left[ A_{2}-A_{4}^{2}\right] , \end{aligned}$$
(74)

Substituting back into (8) MCRBs for phase, timing and frequency offset are derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, D. MCRB for timing, phase and frequency estimation in presence of self-phase modulation for low-rate optical communication. Photon Netw Commun 32, 393–406 (2016). https://doi.org/10.1007/s11107-016-0667-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-016-0667-7

Keywords

Navigation