Skip to main content
Log in

Performance improvement of spatial modulation-assisted FSO systems over Gamma–Gamma fading channels with geometric spreading

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

A number of studies recently have proposed optical spatial modulation (SM) as a simple, power- and bandwidth efficient modulation scheme for free-space optical communication (FSO) systems. In these studies, it was assumed that an active laser source only sends the signal to one targeted photodetector (PD). However, undesirable PDs still can receive the signal from the active source due to geometric spreading (i.e., laser beam broadening). In addition, if the fading channels between the active source and multiple PDs are correlated, the probability of wrong detection of the active source’s index during spatial demodulation process may increase. In this paper, we first analyze the impact of geometric spreading on the performance of FSO systems using SM over uncorrelated Gamma–Gamma fading channel. We find that the advantage in reducing the transmission bandwidth of SM cannot compensate its limitation in suffering from geometric spreading. We then propose to combine N-SM with pulse-position modulation (L-PPM) and transmit diversity (\(M\,\times \,1\) MISO) to improve the performance of SM-based FSO systems. The numerical results, which are validated by Monte–Carlo simulations, confirm the superiority of the proposed system in comparison with the conventional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Willebrand, H.A., Ghuman, B.S.: Fiber optics without fiber. IEEE Spectr. 38(8), 40–45 (2001). doi:10.1109/6.938713

    Article  Google Scholar 

  2. Liu, Q., Qiao, C., Mitchell, G., Stanton, S.: Optical wireless communication networks for first- and last-mile broadband access [Invited]. OSA J. Opt. Netw. 4(12), 807–828 (2005). doi:10.1364/JON.4.000807

    Article  Google Scholar 

  3. Zhu, X., Khan, J.M.: Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 50(8), 1293–1300 (2002). doi:10.1109/TCOMM.2002.800829

    Article  Google Scholar 

  4. Wilson, S.G., Brandt-Pearce, M., Cao, Q., Leveque, J.H.: Free-space optical MIMO transmission with Q-ary PPM. IEEE Trans. Commun. 53(8), 1402–1412 (2005). doi:10.1109/TCOMM.2005.852836

    Article  Google Scholar 

  5. Cvijetic, N., Wilson, S.G., Brandt-Pearce, M.: Receiver optimization in turbulent free-space optical MIMO channels With APDs and Q-ary PPM. IEEE Photonics Technol. Lett. 19(2), 103–105 (2007). doi:10.1109/LPT.2006.889105

    Article  Google Scholar 

  6. Bayaki, E., Schober, R., Mallik, R.K.: Performance analysis of MIMO free-space optical systems in Gamma–Gamma fading. IEEE Trans. Commun. 57(11), 3415–3424 (2009). doi:10.1109/TCOMM.2009.11.080168

    Article  Google Scholar 

  7. Fath, T., Renzo, M.D., Haas, H.: On the performance of space shift keying for optical wireless communications. In: Proceedings of IEEE Globecom 2010, Miami, pp. 990–994 (2010). doi:10.1109/GLOCOMW.2010.5700474

  8. Fath, T., Haas, H., Di Renzo, M., Mesleh, R.: Spatial modulation applied to optical wireless communications in indoor LOS environments. In: Proceedings of IEEE Globecom 2011, Houston (2011). doi:10.1109/GLOCOM.2011.6133552

  9. Mesleh, R., Elgala, H., Haas, H.: Optical spatial modulation. IEEE/OSA J. Opt. Commun. Netw. 3(3), 234–244 (2011). doi:10.1364/JOCN.3.000234

    Article  Google Scholar 

  10. Popoola, W.O., Poves, E., Haas, H.: Spatial pulse position modulation for optical communications. IEEE J. Lightwave Technol. 30(18), 2948–2954 (2012). doi:10.1109/JLT.2012.2208940

    Article  Google Scholar 

  11. Popoola, W.O., Poves, E., Haas, H.: Error performance of generalised space shift keying for indoor visible light communications. IEEE Trans. Commun. 61(5), 1968–1976 (2013). doi:10.1109/TCOMM.2013.022713.120501

    Article  Google Scholar 

  12. Hwang, S.H., Cheng, Y.: SIM/SM-aided free-space optical communication with receiver diversity. IEEE J. Lightwave Technol. 32(14), 2443–2450 (2014). doi:10.1109/JLT.2014.2327078

    Article  Google Scholar 

  13. Ozbilgin, T., Koca, M.: Optical spatial modulation over atmospheric turbulence channels. IEEE J. Lightwave Technol. 33(11), 2313–2323 (2015). doi:10.1109/JLT.2015.2409302

    Article  Google Scholar 

  14. Pham, H.T.T., Chu, D.B., Dang, N.T.: Performance analysis of spatial PPM-based free-space optical communication systems with Gaussian beam. In: Proceeding of the 2014 International Conference on Advanced Technology for Communication (ATC 2014), Hanoi, Vietnam, 144–148 (2014). doi:10.1109/ATC.2014.7043373

  15. Bithas, P.S., Sagias, N.C., Mathiopoulos, P.T., Karagiannidis, G.K., Rontogiannis, A.A.: On the performance analysis of digital communications over generalized-K fading channels. IEEE Commun. Letters. 10(5), 353–355 (2006). doi:10.1109/LCOMM.2006.05030

    Article  Google Scholar 

  16. Al-Habash, M.A., Andrews, L.C., Phillips, R.L.: Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt. Eng. 40(8), 1554–1562 (2001). doi:10.1117/1.1386641

    Article  Google Scholar 

  17. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic, New York (2007)

    MATH  Google Scholar 

  18. Ricklin, J.C., Davidson, F.M.: Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free space laser communication. J. Opt. Soc. Am. A Opt. Image Sci 19(9), 1794–1802 (2002). doi:10.1364/JOSAA.19.001794

    Article  Google Scholar 

  19. Farid, A.A., Hranilovic, S.: Outage capacity optimization for free-space optical links with pointing errors. IEEE J. Lightwave Technol. 25(7), 1702–1710 (2007). doi:10.1109/JLT.2007.899174

    Article  Google Scholar 

  20. Chatzidiamantis, N.D., Karagiannidis, G.K.: On the distribution of the sum of gamma–gamma variates and applications in RF and optical wireless communications. IEEE Trans. Commun. 59(5), 1298–1308 (2011). doi:10.1109/TCOMM.2011.020811.090205

    Article  Google Scholar 

  21. Dang, N.T., Pham, A.T.: Performance improvement of FSO/CDMA systems over dispersive turbulence channel using multi-wavelength PPM signaling. OSA Opt. Express 20(24), 26786–26797 (2012). doi:10.1364/OE.20.026786

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their thorough reviews and useful suggestions for improving the readability of this paper. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the Grant No. 102.02-2015.06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc T. Dang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, H.T.T., Dang, N.T. Performance improvement of spatial modulation-assisted FSO systems over Gamma–Gamma fading channels with geometric spreading. Photon Netw Commun 34, 213–220 (2017). https://doi.org/10.1007/s11107-017-0685-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0685-0

Keywords

Navigation