Skip to main content
Log in

Narrow-core hollow optical waveguide with nanostructured SOI as ultra-low loss platform for efficient photodetection

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

A nanostructured hollow optical waveguide based on high-index contrast grating (HCG) embedded SOI is proposed. An ultra-low propagation loss of 1.22 dB/m even at narrow, 1-\(\upmu \)m thick, air-core is reported. A high-performance photodetection is realized by the introduction of hollow core in form of intrinsic region in the photodetection (PIN) layer within HCG-assisted narrow-core waveguide. A sufficiently high responsivity of 0.8 A/W and quantum efficiency of 64% are obtained at 1550-nm which is possible because of the presence of surface modes within HCG which get coupled in the photodetection layer leading to a strong optical confinement in that layer. High reflectivity, small penetration length and coupling of lateral surface modes in HCG make it possible to offer improved waveguiding and hence photodetection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Umbach, A.: High-speed integrated photodetectors for 40 Gb/s applications. Proc. SPIE 5246, 434–442 (2004)

    Article  Google Scholar 

  2. Notomi, M., Shinya, A., Nozaki, K., Tanabe, T., Matsuo, S., Kuramochi, E., Sato, T., Taniyama, H., Sumikura, H.: Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip. IET Circuits Devices Syst. 5, 84–93 (2011)

    Article  Google Scholar 

  3. DeRose, C.T., Trotter, D.C., Zortman, W.A., Starbuck, A.L., Fisher, M., Watts, M.R., Davids, P.S.: Ultracompact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. Opt. Express 19, 24897–24904 (2011)

    Article  Google Scholar 

  4. Assefa, S., Xia, F.N., Green, W.M.J., Schow, C.L., Rylyakov, A.V., Vlasov, Y.A.: CMOS-integrated optical receivers for on-chip interconnects. IEEE J. Sel. Top. Quantum Electron. 16, 1376–1385 (2010)

    Article  Google Scholar 

  5. Nozaki, K., Matsuo, S., Takeda, K., Sato, T., Kuramochi, E., Notomi, M.: InGaAs nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure. Opt. Express 21, 19022–19028 (2013)

    Article  Google Scholar 

  6. Kaur, J., Kumar, M., Kaushik, B.K.: Electrical tuning of optical delay in graphene-based photonic crystal waveguide. IEEE J. Quantum Elecron. 51, 1–5 (2015)

    Google Scholar 

  7. Miller, D.A.B.: Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009)

    Article  Google Scholar 

  8. Roelkens, G., Brouckaert, J., Taillaert, D., Dumon, P., Bogaerts, W., Thourhout, D.V., Baets, R.: Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits. Opt. Express 13, 10102–10108 (2005)

    Article  Google Scholar 

  9. Chen, L., Dong, P., Lipson, M.: High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Opt. Express 16, 11513–11518 (2008)

    Article  Google Scholar 

  10. Hsu, S., Chen, Y., You, H.: Waveguide coupled photodiode using reflector and metal coplanar waveguide for optical triplxing applications. Opt. Express 18, 9303–9313 (2010)

    Article  Google Scholar 

  11. Ahn, D., Kimerling, L.C., Michel, J.: Efficient evanescent wave coupling conditions for waveguide-integrated thin-film Si/Gephotodetectors on silicon-on-insulator/germanium-on-insulator substrates. J. Appl. Phys. 110, 083115-1–083115-9 (2011)

    Google Scholar 

  12. Gassenq, A., Hattasan, N., Cerutti, L., Rodriguez, J.B., Tournie, E., Roelkens, G.: Study of evanescently-coupled and grating assisted GaInAsSb photodiodes integrated on a silicon photonic chip. Opt. Express 20, 11665–11672 (2012)

    Article  Google Scholar 

  13. Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J., Levy, U.: Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Express 20, 28594–28602 (2012)

    Article  Google Scholar 

  14. Spuesens, T., Mandorlo, F., Rojo-Romeo, P., Régreny, P., Olivier, N., Fédeli, J.M., Thourhout, D.V.: Compact integration of optical sources and detectors on SOI for optical interconnects fabricated in a 200 mm CMOS pilot line. J. Lightwave Technol. 30, 1764–1770 (2012)

    Article  Google Scholar 

  15. Yang, W., Ferrara, J., Grutter, K., Yeh, A., Chase, C., Yue, Y., Willner, A.E., Wu, M.C., Chang-Hasnain, C.J.: Low loss hollow-core waveguide on a silicon substrate. Nanophotonic 1, 23–29 (2012)

    Article  Google Scholar 

  16. Kumar, M.: Narrow bandwidth and polarization independent design of hollow waveguide in-plane mirror with ultrawide tuning-range. Appl. Opt. 53, 1847–51 (2014)

    Article  Google Scholar 

  17. Bicknell, R., King, L., Otis, C.E., Yeo, J.S., Meyer, N., Kornilovitch, P., Lerner, S., Seals, L.: Fabrication and characterization of hollow metal waveguides for optical interconnect applications. Appl. Phys. A 95, 1059–1066 (2009)

    Article  Google Scholar 

  18. Miura, T., Koyama, F., Matsutani, A.: Modeling and fabrication of hollow optical waveguide for photonic integrated circuits. Jpn. J. Appl. Phys. 41, 4785–4789 (2002)

    Article  Google Scholar 

  19. Yang, W., Conkey, D.B., Wu, B., Yin, D., Hawkins, A.R., Schmidt, H.: Atomic spectroscopy on a chip. Nat. Photonics 1, 331–335 (2007)

    Article  Google Scholar 

  20. Kumar, M., Chase, C., Karagodsky, V., Sakaguchi, T., Koyama, F., Chang-Hasnain, C.J.: Low birefringence and 2-D optical confinement of hollow waveguide with distributed bragg reflector and high index contrast grating. IEEE Photonics J. 1, 135–143 (2009)

    Article  Google Scholar 

  21. Kumar, M., Sakagichi, T., Koyama, F.: Giant birefringence and tunable differential group delay in Bragg reflector based on tapered three-dimensional hollow waveguide. Appl. Phys. Lett. 94, 061112-1–061112-3 (2009)

    Google Scholar 

  22. Chang-Hasnain, C.J., Zhou, Y., Huang, M.C.Y., Chase, C.: High-contrast-grating VCSELs. IEEE J. Sel. Topics Quantum Electron. 15, 869–878 (2009)

    Article  Google Scholar 

  23. Zhou, Y., Karagodsky, V., Pesala, B., Sedgwick, F.G., Chang-Hasnain, C.J.: A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings. Opt. Express 17, 1508–1517 (2009)

    Article  Google Scholar 

  24. Chang-Hasnain, C.J., Yang, W.: High-contrast gratings for integrated optoelectronics. Adv. Opt. Photonics 4, 379–440 (2012)

    Article  Google Scholar 

  25. Kang, H., Kumar, M.: Two-way reflector based on two-dimensional sub-wavelength high-index contrast grating on SOI. Opt. Commun. 366, 266–270 (2016)

    Article  Google Scholar 

  26. Glytsis, E.N., Jokerst, N.M., Villalaz, R.A., Cho, S.Y.: Substrate-embedded and flip-chip-bonded photodetector polymer-based optical interconnects: analysis, design, and performance. J. Lightwave Technol. 21, 2382–2394 (2003)

    Article  Google Scholar 

  27. de Cumis, U.S., Xu, J.H., Bledt, C.M., Harrington, J.A., Tredicucci, A., Vitiello, M.S.: Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared. J. Infrared Millim. Terahertz Waves 33, 319–326 (2012)

    Article  Google Scholar 

  28. Bauters, J.F., Davenport, M.L., Heck, M.J.R., Doylend, J.K., Chen, A., Fang, A.W., Bowers, J.E.: Silicon on ultra-low-loss waveguide photonic integration platform. Opt. Express 1, 544–555 (2013)

    Article  Google Scholar 

  29. Miura, T., Koyama, F., Matsutani, A.: Modeling and fabrication of hollow optical waveguide for photonic integrated circuits. Jpn. J. Appl. Phys. 41, 4785–4789 (2002)

    Article  Google Scholar 

  30. Mutlu, M., Akosman, A.E., Kurt, G., Gokkavas, M., Ozbay, E.: Experimental realization of a high-contrast grating based broadband quarter-wave plate. Opt. Express 20, 27966–27973 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Kaur, H. & Kumar, M. Narrow-core hollow optical waveguide with nanostructured SOI as ultra-low loss platform for efficient photodetection. Photon Netw Commun 34, 241–247 (2017). https://doi.org/10.1007/s11107-017-0687-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0687-y

Keywords

Navigation