Skip to main content
Log in

High-performance ultra-compact communication triplexer on silicon-on-insulator photonic crystal structure

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Here we reported capable ultra-compact optical triplexer on silicon-on-insulator substrate with resonance cavity for an application of optical communication network. Three cavities are used which can separate three communication wavelengths 1.31, 1.445 and 1.55 \(\upmu \)m. The average output efficiency and quality factor of proposed structure 98% and 2335 obtained, respectively. Proposed triplexer has the very low cross talk of −25 to −50 dB. Total foot print of structure 28.4 \(\upmu \mathrm{m}^{2}\) designed that offers strong transverse confinement of light and is promising candidates for photonic integrated circuits such as wavelength division multiplexing, optical communication and compatible with complementary metal–oxide–semiconductor-Si fabrication processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  2. Notomi, M., Shinya, A., Yamada, K., Takahashi, J., Takahashi, C., Yokohama, I.: Single mode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI. Electr. Lett. l37, 293 (2000)

    Google Scholar 

  3. Johnson, S.G., Villeneuve, P.R., Fan, S., Joannopoulos, J.D.: Waveguides in photonic-crystal slabs. Phys. Rev. 62, 8212–8222 (2000)

    Article  Google Scholar 

  4. Sinha, R.K., Rawal, S.: Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer. Opt. Quantum Electron. 40, 603–613 (2008)

    Article  Google Scholar 

  5. Shinya, A., Notomi, M., Yokohama, I., Takahashi, C., Takahashi, J.: Two-dimensional Si photonic crystals on oxide using SOI substrate. Opt. Quantum Electron. 34, 113 (2002)

    Article  Google Scholar 

  6. Rawal, S., Sinha, R.K.: Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer. Opt. Commun. 686, 3889–3894 (2009)

    Article  Google Scholar 

  7. Koshiba, M.: Wavelength division multiplexing and demultiplexing with photonic crystal directional couplers. J. Lightwave Technol. 19, 1970–1975 (2001)

    Article  Google Scholar 

  8. Niemi, T., Frandsen, L.H., Hede, K.K., Harpøth, A., Borel, P.I., Kristensen, M.: Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photon. Tech. Lett. 18, 226–228 (2006)

    Article  Google Scholar 

  9. Li, L., Liu, G.Q., Chen, Y.H., Tang, F.L., Huang, K., Gong, L.X.: Photonic crystal multi-channel drop filters with Fabry-Perot microcavity reflection feedback. Optik 124, 2608–2611 (2013)

    Article  Google Scholar 

  10. Chein, F.S.-S., Hsu, Y.-J., Hsieh, W.-F., Cheng, S.-C.: Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides. Opt. Express 12, 1119–1125 (2004)

    Article  Google Scholar 

  11. Mehdizadeh, F., Soroosh, M.: A new proposal for eightchannel optical demultiplexer based on photonic crystal resonant cavities. Photon. Netw. Commun. 31, 65–70 (2016)

    Article  Google Scholar 

  12. Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh- Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E 56, 211–215 (2014)

    Article  Google Scholar 

  13. Shih, T.-T., Wu, Y.-D., Lee, J.-J.: Proposal for compact optical triplexer filter using 2-D photonic crystals. IEEE Photon. Technol. Lett. 21(1), 18–20 (2009)

  14. He, L., Xu, X., Liu, L., Yu, T., Fang, L.: Ultra compact triplexer by coupling and decoupling of multiple photonic crystal waveguides. J. Opt. 12(6) (2010). doi:10.1088/2040-8978/12/6/065502

  15. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and optimization of photonic crystal triplexer for optical networks. IJCSI 9(4), 24–28 (2012)

  16. Yang, J., Zhang, Z., Chang, S.H., Jia, H., Zhang, X.: Compact double-layer waveguide grating triplexer based on silicon-on-insulator. Micro Nano Lett. 7(4), 384–387 (2012)

    Article  Google Scholar 

  17. Truong, C.-D., Hoang, V.-C.: A triplexer based on cascaded 2\(\times \)2 butterfly MMI couplers using silicon waveguides. Opt. Quantum Electron. (2014). doi:10.1007/s11082-014-9923-1

  18. Zhang, Z., Tsuji, Y., Yasui, T., Hirayama, K.: Design of ultra-compact triplexer with function-expansion based topology optimization. Opt. Express 23(4), 3937 (2015). doi:10.1364/OE.23.003937

    Article  Google Scholar 

  19. Taflove, A., Hangess, S.C.: Computational Electrodynamics. The Finite—Difference Time—Domain Method, 3rd edn. Artech House, Norwood (2005)

    Google Scholar 

  20. Gedney, S.D.: Introduction to Finite-Difference Time-Domain (FDTD) Method for Electromagnetics. Morgan & Claypool, Lexington (2010)

    MATH  Google Scholar 

  21. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis. Opt. Express. 8, 173–190 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyid Mehdi Sattari-Esfahlan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghizade, S., Sattari-Esfahlan, S.M. High-performance ultra-compact communication triplexer on silicon-on-insulator photonic crystal structure. Photon Netw Commun 34, 445–450 (2017). https://doi.org/10.1007/s11107-017-0702-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0702-3

Keywords

Navigation