Skip to main content
Log in

Performance modeling of QoS differentiation in optical packet switching via FDL access limitation

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

We present an exact analytical model for single-wavelength quality of service (QoS) differentiation in a two-class optical packet switch. In this system, QoS differentiation is achieved by limiting the set of fiber delay lines (FDLs) to the low-priority class, whereas the high-priority class is allowed to access the entire FDL bank. The analytical model is based on multi-regime Markov fluid queues and is extensible to multi-class systems with more than two classes. Markovian arrival process packet arrivals and phase-type distributed packet sizes are considered for the purpose of generality. The proposed analytical model is validated through simulations. The numerical results provide insight into determining appropriate subsets of FDLs allowed for the access of the low-priority class. The results also show that it is possible to direct almost all the packet losses to the low-priority class under moderate loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gambini, P., Renaud, M., Guillemot, C., Callegati, F., Andonovic, I., Bostica, B., Chiaroni, D., Corazza, G., Danielsen, S., Gravey, P., Hansen, P., Henry, M., Janz, C., Kloch, A., Krahenbuhl, R., Raffaelli, C., Schilling, M., Talneau, A., Zucchelli, L.: Transparent optical packet switching: network architecture and demonstrators in the KEOPS project. IEEE J. Sel. Areas Commun. 16(7), 1245–1259 (1998)

    Article  Google Scholar 

  2. Qiao, C., Yoo, M.: Optical burst switching (OBS)—a new paradigm for an optical internet. J. High Speed Netw. 8(1), 69–84 (1999)

    Google Scholar 

  3. Barry, R.A., Humblet, P.A.: Models of blocking probability in all-optical networks with and without wavelength changers. In: INFOCOM ’95. Fourteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Bringing Information to People. Proceedings, vol. 2, pp. 402–412. IEEE (1995)

  4. Chlamtac, I., Fumagalli, A., Kazovsky, L., Melman, P., Nelson, W., Poggiolini, P., Cerisola, M., Choudhury, A., Fong, T., Hofmeister, R., Lu, C.L., Mekkittikul, A., Sabido, D.J.M., Suh, C.J., Wong, E.: CORD: contention resolution by delay lines. IEEE J. Sel. Areas Commun. 14(5), 1014–1029 (1996)

    Article  Google Scholar 

  5. Callegati, F.: Optical buffers for variable length packets. IEEE Commun. Lett. 4(9), 292–294 (2000)

    Article  Google Scholar 

  6. Callegati, F.: Approximate modeling of optical buffers for variable length packets. Photon Netw. Commun. 3(4), 383–390 (2001)

    Article  Google Scholar 

  7. Rogiest, W., Laevens, K., Walraevens, J., Bruneel, H.: Analyzing a degenerate buffer with general inter-arrival and service times in discrete time. Queueing Syst. 56(3), 203–212 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Yoo, M., Qiao, C., Dixit, S.: Optical burst switching for service differentiation in the next-generation optical internet. IEEE Commun. Mag. 39(2), 98–104 (2001)

  9. Overby, H., Stol, N., Nord, M.: Evaluation of QoS differentiation mechanisms in asynchronous bufferless optical packet-switched networks. IEEE Commun. Mag. 44(8), 52–57 (2006)

    Article  Google Scholar 

  10. Yazici, M.A., Akar, N.: Analysis of continuous feedback Markov fluid queues and its applications to modeling optical burst switching. In: 2013 25th International on Teletraffic Congress (ITC), pp. 1–8 (2013)

  11. Lee, Y., Choi, Y., Jung, B., Kang, M.: Service differentiation using shared fiber delay line bank in OBS networks. Photon Netw. Commun. 20(3), 201–208 (2010)

    Article  Google Scholar 

  12. Lee, Y., Kim, J., Kang, M.: Feasibility analysis for service differentiation using an FDL bank in OBS networks. Photon Netw. Commun. 15(3), 275–281 (2008)

    Article  Google Scholar 

  13. Overby, H.: An adaptive service differentiation algorithm for optical packet switched networks. In: Proceedings of 2003 5th International Conference on Transparent Optical Networks, 2003, vol. 1, pp. 158–161 (2003)

  14. Stol, N., Overby, H.: A teletraffic model for service differentiation in OPS networks. In: Proceedings of Optoelectronic and Communications Conference (OECC), vol. 2, pp. 677–678 (2003)

  15. Kankaya, H.E., Akar, N.: Exact analysis of single-wavelength optical buffers with feedback Markov fluid queues. IEEE/OSA J. Opt. Commun. Netw. 1(6), 530–542 (2009)

    Article  Google Scholar 

  16. Turner, J.: Terabit burst switching. J. High Speed Netw. 8(1), 3–16 (1999)

  17. Rogiest, W., Laevens, K., Wittevrongel, S., Bruneel, H.: Heuristic performance model of optical buffers for variable length packets. Photon Netw. Commun. 26(2), 65–73 (2013)

    Article  Google Scholar 

  18. Neuts, M.F.: Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker, New York (1989)

    MATH  Google Scholar 

  19. Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. Johns Hopkins University Press, Baltimore (1981)

    MATH  Google Scholar 

  20. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM Series on Statistics and Applied Probability. SIAM, Philadelphia, PA (1999)

  21. Akar, N., Sohraby, K.: Infinite- and finite-buffer Markov fluid queues: a unified analysis. J. Appl. Probab. 41(2), 557–569 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kulkarni, V.G.: Fluid models for single buffer systems. In: Dshalalow, J.H. (ed.) Frontiers in Queuing: Models and Applications in Science and Engineering, pp. 321–338. CRC Press, Boca Raton (1997)

    Google Scholar 

  23. Ramaswami, V.: Matrix analytic methods for stochastic fluid flows. In: Teletraffic Engineering in a Competitive World (Proceedings of the 16th International Teletraffic Congress), pp. 1019–1030. Elsevier, Edinburgh (1999)

  24. da Silva Soares, A., Latouche, G.: Matrix-analytic methods for fluid queues with finite buffers. Perform. Eval. 63(45), 295–314 (2006)

    Article  Google Scholar 

  25. Kankaya, H.E., Akar, N.: Solving multi-regime feedback fluid queues. Stoch. Models 24, 425–450 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mandjes, M., Mitra, D., Scheinhardt, W.: Models of network access using feedback fluid queues. Queueing Syst. Theory Appl. 44(4), 2989–3002 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. da Silva Soares, A., Latouche, G.: Fluid queues with level dependent evolution. Eur. J. Oper. Res. 196(3), 1041–1048 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Yazici, M.A.: Stochastic modeling with continuous feedback Markov fluid queues. Ph.D. thesis, Bilkent University, Ankara (2014)

  29. Dzial, T., Breuer, L., da Silva Soares, A., Latouche, G., Remiche, M.A.: Fluid queues to solve jump processes. Perform. Eval. 62, 132–146 (2005)

    Article  Google Scholar 

  30. G.711: pulse code modulation (PCM) of voice frequencies. The International Telecommunication Union (ITU). http://www.itu.int/rec/T-REC-G.711/e (1988). Accessed 01 Aug 2016

  31. Bellcore Morristown Ethernet Traces. http://ita.ee.lbl.gov/html/contrib/BC.html (1989). Accessed 01 Aug 2016

  32. Leland, W.E., Wilson, D.V.: High time-resolution measurement and analysis of LAN traffic: implications for LAN interconnection. In: INFOCOM ’91. Proceedings. Tenth Annual Joint Conference of the IEEE Computer and Communications Societies. Networking in the 90s, vol. 3, pp. 1360–1366. IEEE (1991)

  33. Casale, G., Zhang, E.Z., Smirni, E.: KPC-toolbox: simple yet effective trace fitting using Markovian arrival processes. In: QEST ’08. Fifth International Conference on Quantitative Evaluation of Systems, 2008, pp. 83–92 (2008)

  34. KPC-toolbox. http://www.cs.wm.edu/MAPQN/kpctoolbox.html. Accessed 01 Aug 2016

  35. Packet size distribution comparison between Internet links in 1998 and 2008. Center for Applied Internet Data Analysis (CAIDA). https://www.caida.org/research/traffic-analysis/pkt_size_distribution/graphs.xml. Accessed 01 Aug 2016

  36. Sinha, R., Papadopoulos, C., Heidemann, J.: Internet packet size distributions: some observations. Technical reports ISI-TR-2007-643, USC/Information Sciences Institute. http://www.isi.edu/~johnh/PAPERS/Sinha07a.html (2007)

Download references

Acknowledgements

This study was partially funded by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under Grants 115E360 and 111E106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nail Akar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazici, M.A., Akar, N. Performance modeling of QoS differentiation in optical packet switching via FDL access limitation. Photon Netw Commun 34, 344–355 (2017). https://doi.org/10.1007/s11107-017-0705-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0705-0

Keywords

Navigation