Skip to main content
Log in

Photonic crystal-based permutation switch for optical networks

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

We present, for the first time, the design of a low-cross talk scalable permutation switch employing photonic crystal ring resonators in an optical network. Through this novel approach, the transition between different states of the \(2 \times 2\) optical switch, as the basic element, is achieved by applying different operating wavelengths. Subsequently, the shuffling mechanisms in \(3 \times 3\) and \(4 \times 4\) optical networks are realized by controlling the position of photonics crystal ring resonators. Lowest cross talk levels of 6 and 5% are obtained for “bar” and “cross” switching states, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Palais, J.C.: Fiber Optic Communications. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  2. Sampsell, J.B., McDonald, T.G.: Optical Fiber Interconnection Network Including Spatial Light Modulator. Google Patents (1989)

  3. Sampsell, J.B., McDonald, T.G.: Optical Interconnection Network. Google Patents (1991)

  4. Duato, J., Yalamanchili, S., Ni, L.M.: Interconnection Networks: An Engineering Approach. Morgan Kaufmann, Burlington (2003)

    Google Scholar 

  5. Lam, C.F., Liu, H., Koley, B., Zhao, X., Kamalov, V., Gill, V.: Fiber optic communication technologies. IEEE Commun. Mag. 48, 32–39 (2010)

    Article  Google Scholar 

  6. Biberman, A., Bergman, K.: Optical interconnection networks for high-performance computing systems. Rep. Prog. Phys. 75, 046402 (2012)

    Article  Google Scholar 

  7. Miller, D.A.B.: Optical interconnects to electronic chips. Appl. Opt. 49, F59–F70 (2010)

    Article  Google Scholar 

  8. Goodman, J.W., Leonberger, F.I., Kung, S.-Y., Athale, R.A.: Optical interconnections for VLSI systems. IEEE Proc. 72, 850–866 (1984)

    Article  Google Scholar 

  9. Cho, H., Kapur, P., Saraswat, K.C.: Power comparison between high-speed electrical and optical interconnects for interchip communication. J. Lightwave Technol. 22, 2021 (2004)

    Article  Google Scholar 

  10. Pepeljugoski, P.K., Kash, J.A., Doany, F., Kuchta, D.M., Schares, L., Schow, C., Taubenblatt, M., Offrein, B.Jan., Benner, A.: Low power and high density optical interconnects for future supercomputers. In: Optical Fiber Communication Conference, p. OThX2. Optical Society of America (2010)

  11. Mikawa, T., Kinoshita, M., Hiruma, K., Ishitsuka, T., Okabe, M., Hiramatsu, S., Furuyama, H., Matsui, T., Kumai, K., Ibaragi, O.: Implementation of active interposer for high-speed and low-cost chip level optical interconnects. IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003)

    Article  Google Scholar 

  12. Schaller, R.R.: Moore’s law: past, present and future. IEEE Spectr. 34, 52–59 (1997)

    Article  Google Scholar 

  13. Lundstrom, M.: Moore’s law forever? Science 299, 210 (2003)

    Article  Google Scholar 

  14. Thompson, S.E., Parthasarathy, S.: Moore’s law: the future of Si microelectronics. Mater. Today 9, 20–25 (2006)

    Article  Google Scholar 

  15. Yao, S., Mukherjee, B., Dixit, S.: Advances in photonic packet switching: an overview. IEEE Commun. Mag. 38, 84–94 (2000)

    Google Scholar 

  16. Qiao, C., Yoo, M.: Optical burst switching (OBS)—a new paradigm for an optical internet. J. High Speed Netw. 8, 69–84 (1999)

    Google Scholar 

  17. Burmeister, E.F., Bowers, J.E.: Integrated gate matrix switch for optical packet buffering. IEEE Photonics Technol. Lett. 18, 103–105 (2006)

    Article  Google Scholar 

  18. Ye, X., Yin, Y., Yoo, S.J.B., Mejia, P., Proietti, R., Akella, V.: DOS: a scalable optical switch for datacenters. In: Proceedings of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, p. 24 (2010)

  19. Benes, V.E.: Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press, New York (1965)

    MATH  Google Scholar 

  20. Kachris, C., Tomkos, I.: A survey on optical interconnects for data centers. IEEE Commun. Surv. Tutor. 14, 1021–1036 (2012)

    Article  Google Scholar 

  21. Chen, K., Singla, A., Singh, A., Ramachandran, K., Lei, X., Zhang, Y., Wen, X., Chen, Y.: OSA: an optical switching architecture for data center networks with unprecedented flexibility. IEEE/ACM Trans. Netw. 22, 498–511 (2014)

    Article  Google Scholar 

  22. Hinton, H.S.: Photonic switching using directional couplers. IEEE Commun. Mag. 25, 16–26 (1987)

    Article  Google Scholar 

  23. Nakamura, H., Sugimoto, Y., Kanamoto, K., Naoki Ikeda, Y., Tanaka, Y.N., Ohkouchi, S., Watanabe, Y., Inoue, K., Ishikawa, H.: Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks. Opt. Express 12, 6606–6614 (2004)

    Article  Google Scholar 

  24. Djavid, M., Ghaffari, A., Monifi, F., Abrishamian, M.: Heterostructure photonic crystal channel drop filters using mirror cavities. J. Opt. A Pure Appl. Opt. 10, 055203 (2008)

    Article  Google Scholar 

  25. Djavid, M., Abrishamian, M.S.: Photonic crystal channel drop filters with mirror cavities. Opt. Quantum Electron. 39, 1183–1190 (2007)

    Article  Google Scholar 

  26. Li, L., Liu, G.: Photonic crystal ring resonator channel drop filter. Opt. Int. J. Light Electron Opt. 124, 2966–2968 (2013)

    Article  Google Scholar 

  27. Li, L., Liu, G., Huang, K., Chen, Y., Gong, L., Tang, F.: A new photonic crystal channel drop filter. In: 2012 Symposium on Photonics and Optoelectronics (SOPO), pp. 1–3 (2012)

  28. Mahmoud, M.Y., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285, 368–372 (2012)

    Article  Google Scholar 

  29. Darki, B.S., Granpayeh, N.: Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method. Opt. Commun. 283, 4099–4103 (2010)

    Article  Google Scholar 

  30. Djavid, M., Monifi, F., Ghaffari, A., Abrishamian, M.S.: Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Opt. Commun. 281, 4028–4032 (2008)

    Article  Google Scholar 

  31. Wu, Y.-D., Shih, T.-T., Lee, J.-J.: High-quality-factor filter based on a photonic crystal ring resonator for wavelength division multiplexing applications. Appl. Opt. 48, F24–F30 (2009)

    Article  Google Scholar 

  32. Rakhshani, M., Mansouri-Birjandi, M.: Heterostructure four channel wavelength demultiplexer using square photonic crystals ring resonators. J. Electromagn. Waves Appl. 26, 1700–1707 (2012)

    Article  Google Scholar 

  33. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik Int. J. Light Electron Opt. 124, 5964–5967 (2013)

    Article  MATH  Google Scholar 

  34. Kumar, V.D., Srinivas, T., Selvarajan, A.: Investigation of ring resonators in photonic crystal circuits. Photonics Nanostruct. Fundam. Appl. 2, 199–206 (2004)

    Article  Google Scholar 

  35. Taalbi, A., Bassou, G., Mahmoud, M.Y.: New design of channel drop filters based on photonic crystal ring resonators. Optik Int. J. Light Electron Opt. 124, 824–827 (2013)

    Article  Google Scholar 

  36. Djavid, M., Darki, B.S., Abrishamian, M.: Photonic crystal based cross connect filters. Opt. Commun. 284, 1424–1428 (2011)

    Article  Google Scholar 

  37. Tomioka, K., Tanaka, T., Hara, S., Hiruma, K., Fukui, T.: III-V nanowires on Si substrate: selective-area growth and device applications. IEEE J. Sel. Top. Quantum Electron. 17, 1112–1129 (2011)

    Article  Google Scholar 

  38. Kishino, K., Hoshino, T., Ishizawa, S., Kikuchi, A.: Selective-area growth of GaN nanocolumns on titanium-mask-patterned silicon (111) substrates by RF-plasma-assisted molecular-beam epitaxy. Electron. Lett. 44, 819–821 (2008)

    Article  Google Scholar 

  39. Tomioka, K., Mohan, P., Noborisaka, J., Hara, S., Motohisa, J., Fukui, T.: Growth of highly uniform InAs nanowire arrays by selective-area MOVPE. J. Cryst. Growth 298, 644–647 (2007)

    Article  Google Scholar 

  40. Glas, F.: Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302 (2006)

    Article  Google Scholar 

  41. Nguyen, H.P.T., Zhang, S., Cui, K., Han, X., Fathololoumi, S., Couillard, M., et al.: p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). Nano Lett. 11, 1919–1924 (2011)

    Article  Google Scholar 

  42. Djavid, M., Ghaffari, A., Abrishamian, M.S.: Coupled-mode analysis of photonic crystal add-drop filters based on ring resonators. J. Opt. Soc. Am. B 25, 1829–1832 (2008)

    Article  Google Scholar 

  43. Olivier, S., Benisty, H., Weisbuch, C., Smith, C., Krauss, T., Houdré, R.: Coupled-mode theory and propagation losses in photonic crystal waveguides. Opt. Express 11, 1490–1496 (2003)

    Article  Google Scholar 

  44. Waks, E., Vuckovic, J.: Coupled mode theory for photonic crystal cavity–waveguide interaction. Opt. Express 13, 5064–5073 (2005)

    Article  Google Scholar 

  45. Fan, S., Joannopoulos, J.D.: Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002)

    Article  Google Scholar 

  46. Djavid, M., Mirtaheri, S., Abrishamian, M.: Photonic crystal notch-filter design using particle swarm optimization theory and finite-difference time-domain analysis. J. Opt. Soc. Am. B 26, 849–853 (2009)

    Article  Google Scholar 

  47. Mirjalili, S.M., Abedi, K., Mirjalili, S.: Optical buffer performance enhancement using particle swarm optimization in ring-shape-hole photonic crystal waveguide. Optik Int. J. Light Electron Opt. 124, 5989–5993 (2013)

    Article  Google Scholar 

  48. Mirjalili, S.M., Mirjalili, S., Lewis, A., Abedi, K.: A tri-objective particle swarm optimizer for designing line defect photonic crystal waveguides. Photonics Nanostruct. Fundam. Appl. 12, 152–163 (2014)

    Article  Google Scholar 

  49. Weinberger, P.: John Kerr and his effects found in 1877 and 1878. Philos. Mag. Lett. 88, 897–907 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by New Jersey Institute of Technology (NJIT) and the National Science Foundation Grant EEC-1560131. The authors would like to thank Dr. SeyedAmin Rooholamin at NJIT for valuable and meaningful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hieu Pham Trung Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djavid, M., Dastjerdi, M.H.T., Philip, M.R. et al. Photonic crystal-based permutation switch for optical networks. Photon Netw Commun 35, 90–96 (2018). https://doi.org/10.1007/s11107-017-0719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0719-7

Keywords

Navigation