Skip to main content

Advertisement

Log in

Performance of OFDM-FSO link with analog network coding

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Free space optical (FSO) communication link based on orthogonal frequency division multiplexing (OFDM) gives improved performance because of high bandwidth efficiency, improved robustness against fading, and narrow-band interference. Any FSO system requires line-of-sight (LoS) link and in non-LoS (NLoS) situation, the two users cannot communicate directly resulting in link outage. To solve this problem, this paper proposes to use relay-assisted NLoS-FSO link with energy-saving three time-slotted analog network-coding approach to make the successful communication with increased throughput and improved error performance. The error performance of laser link is evaluated in terms of receiver sensitivity. Gamma–Gamma distribution is used for atmospheric turbulence in this analysis. The performance of relay-assisted intensity modulated/direct detected-OFDM FSO link with and without analog network coding (ANC) is compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kazaura, K., Wakamori, K., Matsumoto, M., Higashino, T., Tsukamoto, K., Komaki, S.: RoFSO: a universal platform for convergence of fiber and free-space optical communication networks. IEEE Comm. Mag. 48(2), 130–137 (2010). doi:10.1109/MCOM.2010.5402676

    Article  Google Scholar 

  2. Tsukamoto, K., Hashimoto, A., Aburakawa, Y., Matsumoto, M.: The case for free space. IEEE Microw. Mag. 10(5), 84–92 (2009). doi:10.1109/MMM.2009.933086

    Article  Google Scholar 

  3. Bekkali, A., Dat, P.T., Kazaura, K., Wakamori, K., Matsumoto, M., Higashino, T., Tsukamoto, K., Komaki, S.: Performance evaluation of an advanced DWDM RoFSO system for transmitting multiple RF signals. IEICE Trans. Fundam. Electron. Commun. Comput.Sci. 92(11), 2697–2705 (2009)

    Article  Google Scholar 

  4. Akbulut, A., Efe, M., Ceylan, A.M., Ari, F., Telatar, Z., Ilk, H.G., Tugac, S.: An experimental hybrid FSO/RF communication system. In: Proceedings of the IASTED International Conference on Communication System and Networks, CSN 2003, Benalmdena, Spain pp. 406–411 (2003)

  5. Vaiopoulos, N., Sandalidis, H.G., Varoutas, D.: WiMAX on FSO: outage probability analysis. IEEE Trans. Commun. 60(10), 2789–2795 (2012). doi:10.1109/TCOMM.2012.071212.110182

    Article  Google Scholar 

  6. Cvijetic, N., Wilson, S.G.: OPN01-4: WiMAX access using optical wireless technology with heterodyne detection in turbulent atmospheric channels. IEEE Globecom 2006, 1–5 (2006). doi:10.1109/GLOCOM.2006.361

    Google Scholar 

  7. Cvijetic, N., Wang, T.: WiMAX over free-space optics—evaluating OFDM multi-subcarrier modulation in optical wireless channels. In: Sarnoff Symposium, 2006 IEEE, pp. 1–4 (2006). doi:10.1109/SARNOF.2006.4534760

  8. Cvijetic, N., Wang, T.: A MIMO Architecture for IEEE 802.16d (WiMAX) Heterogeneous wireless access using optical wireless technology. In: Koucheryavy, Y., Harju, J., Iversen, V.B. (eds.) Next Generation Teletraffic and Wired/Wireless Advanced Networking: Proceedings of 6th International Conference, NEW2AN 2006, St. Petersburg, Russia, May 29–June 2, 2006, pp. 441–451. Springer, Berlin (2006). doi:10.1007/11759355_40

  9. Cvijetic, N., Qian, D., Wang, T.: 10Gb/s free-space optical transmission using OFDM. In: Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008, pp. 1–3. doi:10.1109/OFC.2008.4528442

  10. Zdravkovi, N., Petkovic, M.I., Djordjevic, G.T., Kansanen, K.: Outage analysis of mixed FSO/WiMAX link. IEEE Photonics J. 8(1), 1–14 (2016). doi:10.1109/JPHOT.2016.2516250

    Article  Google Scholar 

  11. Bekkali, A., Naila, C.B., Kazaura, K., Wakamori, K., Matsumoto, M.: Transmission analysis of OFDM-based wireless services over turbulent radio-on-FSO links modeled by Gamma–Gamma distribution. IEEE Photonics J. 2(3), 510–520 (2010). doi:10.1109/JPHOT.2010.2050306

    Article  Google Scholar 

  12. Sharma, M., Chadha, D., Chandra, V.: Performance analysis of spatially multiplexed MIMO-OFDM free space optical communication system. In: 2014 International Conference on Signal Processing and Communications (SPCOM), pp. 1–5 (2014). doi:10.1109/SPCOM.2014.6983942

  13. Sharma, M., Chadha, D., Chandra, V.: Capacity evaluation of MIMO-OFDM free space optical communication system. In 2013 Annual IEEE India Conference (INDICON), pp. 1–4 (2013). doi:10.1109/INDCON.2013.6726078

  14. Bai, F., Su, Y., Sato, T.: Performance evaluation of a dual diversity reception base on OFDM RoFSO systems over correlated log-normal fading channel. In: Proceedings of the 2014 ITU Kaleidoscope Academic Conference: Living in a converged world - Impossible without standards?, pp. 263–268 (2014). doi:10.1109/Kaleidoscope.2014.6858473

  15. Wang, Y., Wang, D., Ma, J.: On the performance of coherent OFDM systems in free-space optical communications. IEEE Photonics J. 7(4), 1–10 (2015). doi:10.1109/JPHOT.2015.2450532

    MathSciNet  Google Scholar 

  16. Kumar, P., Srivastava, A.: Enhanced performance of FSO link using OFDM and comparison with traditional TDM-FSO link. In: IEEE International Broadband and Photonics (IBP) Conference, Bali, Indonesia, pp. 1–6 (2015). doi:10.1109/ANTS.2013.6802858

  17. Kumar, P., Srivastava, A.: Performance improvement of OFDM-FSO multi-user communication system with combined transmit frequency diversity and receive space diversity. Optics Communications 366, 410–418 (2016). doi:10.1016/j.optcom.2015.12.059. http://www.sciencedirect.com/science/article/pii/S0030401815303928

  18. Nee, R.V., Prasad, R.: OFDM for Wireless Multimedia Communications, 1st edn. Artech House Inc, Norwood (2000)

    Google Scholar 

  19. Shieh, W., Djordjevic, I.: Orthogonal frequency division multiplexing for optical communications. Academic Press, Cambridge (2010)

    Google Scholar 

  20. Gonzalez, O., Perez-Jimenez, R., Rodriguez, S., Rabadan, J., Ayala, A.: Adaptive OFDM system for communications over the indoor wireless optical channel. IEE Proc. Optoelectron. 153(4), 139–144 (2006). doi:10.1049/ip-opt:20050081

    Article  Google Scholar 

  21. Armstrong, J., Schmidt, B.J.C., Kalra, D., Suraweera, H.A., Lowery, A.J.: SPC07-4: performance of asymmetrically clipped optical OFDM in AWGN for an intensity modulated direct detection system. IEEE Globecom 2006, 1–5 (2006). doi:10.1109/GLOCOM.2006.571

    Google Scholar 

  22. Wilson, S.K., Armstrong, J.: Digital modulation techniques for optical asymmetrically-clipped OFDM. In: 2008 IEEE Wireless Communications and Networking Conference, pp. 538–542 (2008). doi:10.1109/WCNC.2008.100

  23. Dissanayake, S.D., Armstrong, J.: Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems. J. Lightwave Technol. 31(7), 1063–1072 (2013). doi:10.1109/JLT.2013.2241731

    Article  Google Scholar 

  24. Ranjha, B., Kavehrad, M.: Hybrid asymmetrically clipped OFDM-based IM/DD optical wireless system. IEEE/OSA J. Opt. Commun. Netw. 6(4), 387–396 (2014). doi:10.1364/JOCN.6.000387

    Article  Google Scholar 

  25. Wu, N., Bar-Ness, Y.: A novel power-efficient scheme asymmetrically and symmetrically clipping optical (ASCO)-OFDM for IM/DD optical systems. EURASIP J. Adv. Signal Process. 2015(1), 3 (2015). doi:10.1186/1687-6180-2015-3

    Article  Google Scholar 

  26. Gui, T., Li, C., Yang, Q., Xiao, X., Meng, L., Li, C., Yi, X., Jin, C., Li, Z.: Auto bias control technique for optical OFDM transmitter with bias dithering. Opt. Express 21(5), 5833–5841 (2013). doi:10.1364/OE.21.005833

    Article  Google Scholar 

  27. Zhang, M., Zhang, Z.: An optimum DC-biasing for DCO-OFDM system. IEEE Commun. Lett. 18(8), 1351–1354 (2014). doi:10.1109/LCOMM.2014.2331068

    Article  Google Scholar 

  28. Armstrong, J., Schmidt, B.J.C.: Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN. IEEE Commun. Lett. 12(5), 343–345 (2008). doi:10.1109/LCOMM.2008.080193

    Article  Google Scholar 

  29. Patel, D., Singh, V.K., Dalal, U.D.: Assessment of the DC bias to mitigate the clipping noise in DCO-OFDM, ACO-OFDM; and non-linear distortion of DFB laser transmitted through dispersive single mode fibers in IM/DD Systems. Wirel. Pers. Commun., 1–20 (2017). doi:10.1007/s11277-017-4170-y

  30. Chen, L., Krongold, B., Evans, J.: Theoretical characterization of nonlinear clipping effects in IM/DD optical OFDM systems. IEEE Trans. Commun. 60(8), 2304–2312 (2012). doi:10.1109/TCOMM.2012.060112.110136

    Article  Google Scholar 

  31. Bohren, C., Huffman, D.: Absorption and Scattering of Light by Small Particles. Wiley, New York (2008). https://books.google.co.in/books?id=ib3EMXXIRXUC

  32. El-Shimy, M.A.E.H.: Communications Through Non-Line-of-Sight Solar-Blind Ultraviolet Scattering Channels. McMaster University, Hamilton (2014). http://hdl.handle.net/11375/16231

  33. Kolka, Z., Biolek, D., Biolkova, V.: Simulation of atmospheric optical channel with ISI. In: Proceedings of the 8th WSEAS International Conference on Circuits, Systems, Electronics, Control & Signal Processing, CSECS’09, pp. 198–201. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point (2009). http://dl.acm.org/citation.cfm?id=1736282.1736317

  34. Kumar, P., Srivastava, A.: Receiver sensitivity improvement of OFDM-FSO link using SRM device. In: 2015 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS), pp. 1–6(2015). doi:10.1109/ANTS.2015.7413645

  35. Kumar, N., Teixeira, A.L.J.: 10 Gbit/s OFDM based FSO communication system using M-QAM modulation with enhanced detection. Opt. Quantum Electron. 48(1), 1–7 (2015). doi:10.1007/s11082-015-0272-5

    Google Scholar 

  36. Sharma, V., Kumar, N.: Improved analysis of 2.5 Gbps-inter-satellite link (ISL) in inter-satellite optical-wireless communication (IsOWC) system. Opt. Commun. 286, 99–102 (2013). doi:10.1016/j.optcom.2012.08.055. http://www.sciencedirect.com/science/article/pii/S0030401812009030

  37. Liew, S.C., Zhang, S., Lu, L.: Physical-layer network coding: Tutorial, survey, and beyond. Phys. Commun. 6, 4–42 (2013). doi:10.1016/j.phycom.2012.05.002. http://www.sciencedirect.com/science/article/pii/S1874490712000419. Network Coding and its Applications to Wireless Communications

  38. Abu-Almaalie, Z., Ghassemlooy, Z., Le-Minh, H., Aslam, N.: Physical layer network coding with two-way relay free space optical communication link. In: 2015 Internet Technologies and Applications (ITA), pp. 292–297 (2015). doi:10.1109/ITechA.2015.7317412

  39. He, F., Chen, X., Xiao, L., Zhou, S.: Low complexity power allocation for two-way decode-and-forward OFDM relay networks. In: 2016 IEEE/CIC International Conference on Communications in China (ICCC), pp. 1–6 (2016). doi:10.1109/ICCChina.2016.7636718

  40. Huang, G., Tang, D.: Wireless information and power transfer in two-way OFDM amplify-and-forward relay networks. IEEE Commun. Lett. 20(8), 1563–1566 (2016). doi:10.1109/LCOMM.2016.2570751

    Article  Google Scholar 

  41. Trinh, P.V., Thang, T.C., Pham, A.T.: Two-way all-optical AF relaying FSO systems over Malaga (M) channels with pointing errors. In 2016 IEEE International Conference on Communications (ICC), pp. 1–7 (2016). doi:10.1109/ICC.2016.7511176

  42. Ezzine, S., Abdelkefi, F., Cances, J.P., Meghdadi, V., Bouallgue, A.: Channel capacity and SA-BER performances evaluation of an OFDM-based two-way relaying AF-PNC-PLC systems. In: 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA), pp. 39–46 (2016). doi:10.1109/AINA.2016.150

  43. Katti, S., Gollakota, S., Katabi, D.: Embracing wireless interference: analog network coding. In: Proceedings of the 2007 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM ’07, pp. 397–408. ACM, New York (2007). doi:10.1145/1282380.1282425

  44. Gacanin, H., Adachi, F.: Broadband analog network coding. IEEE Trans. Wirel. Commun. 9(5), 1577–1583 (2010). doi:10.1109/TWC.2010.05.091053

    Article  Google Scholar 

  45. Sjodin, T.: A channel estimation scheme for analog network coding based on OFDM in multipath fading environment (2009). http://www8.cs.umu.se/education/examina/Rapporter/TomasSjodin.pdf

  46. Yadav, S., Upadhyay, P.: Impact of outdated channel estimates on opportunistic two-way ANC-based relaying with three-phase transmissions. IEEE Trans. Veh. Technol. 64(12), 5750–5766 (2015). doi:10.1109/TVT.2014.2387480

    Article  Google Scholar 

  47. Park, J.C., Song, I., Kim, Y.H.: Outage-optimal allocation of relay power for analog network coding with three transmission phases. IEEE Commun. Lett. 16(6), 838–841 (2012). doi:10.1109/LCOMM.2012.041112.120094

    Article  Google Scholar 

  48. Wang, J.S., Lee, S.R., Kim, Y.H.: Rate-aware three phase analog network coding with low-complexity multi-antenna relay processing. In Wireless Communications and Networking Conference (WCNC), 2014 IEEE, pp. 1065–1069 (2014). doi:10.1109/WCNC.2014.6952276

  49. Park, J.C., Wang, J.S., Kim, Y.H.: Rate and outage performance of non-regenerative two-way relaying protocols with direct link. In: Vehicular Technology Conference (VTC Fall), 2011 IEEE, pp. 1–5 (2011). doi:10.1109/VETECF.2011.6093190

  50. Zhang, S., Liew, S.C., Lu, L.: Schemes, physical layer network coding, over finite and infinite fields. In: Global Telecommunications Conference. IEEE GLOBECOM 2008. IEEE, pp. 1–6 (2008). doi:10.1109/GLOCOM.2008.ECP.726

  51. Arnon, S.: Encyclopedia of optical engineering. In: Driggers, R.G., Hoffman, C., Driggers, R. (eds.) Optical Wireless Communications, pp. 1866–1886. CRC Press, Boca Raton (2003)

  52. Vaiopoulos, N., Sandalidis, H., Varoutas, D.: Using a HAP network to transfer WiMAX OFDM signals: outage probability analysis. IEEE/OSA J. Opt. Commun. Netw. 5(7), 711–721 (2013). doi:10.1364/JOCN.5.000711

    Article  Google Scholar 

  53. Al-Raweshidy, H., Komaki, E.E.S.: Radio Over Fiber Technology for Mobile Communication Networks. Artech House, Norwood (2002)

  54. Kaur, P., Jain, V.K., Kar, S.: Performance analysis of FSO array receivers in presence of atmospheric turbulence. IEEE Photonics Technol. Lett. 26(12), 1165–1168 (2014). doi:10.1109/LPT.2014.2316534

    Article  Google Scholar 

  55. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications: System and Channel Modelling with MATLAB, Optical Wireless Communications: System and Channel Modelling with MATLAB, 1st edn. CRC Press Inc, Boca Raton (2012)

    Google Scholar 

  56. Wolfram function site (2009). http://functions.wolfram.com/PDF/MeijerG.pdf

  57. Song, X., Yang, F., Cheng, J.: Subcarrier intensity modulated optical wireless communications in atmospheric turbulence with pointing errors. IEEE/OSA J. Opt. Commun. Netw. 5(4), 349–358 (2013). doi:10.1364/JOCN.5.000349

    Article  Google Scholar 

  58. Adamchik, V.S., Marichev, O.I.: The algorithm for calculating integrals of hypergeometric type functions and its realization in reduce system. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC ’90, pp. 212–224. ACM, New York (1990). doi:10.1145/96877.96930

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravindra Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Thakor, S. Performance of OFDM-FSO link with analog network coding. Photon Netw Commun 35, 210–224 (2018). https://doi.org/10.1007/s11107-017-0730-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0730-z

Keywords

Navigation