Skip to main content
Log in

All optical half adder based on photonic crystal resonant cavities

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, we are going to propose and design an all optical half adder based on photonic crystal structures. For realizing the proposed structure, we will use two nonlinear resonant cavities inside a two-dimensional photonic crystal structure. Nonlinear resonant cavities will be created by replacing the ordinary rods via defect rod made of nonlinear material such as doped glass. Plane-wave expansion and finite difference time domain methods will be used for simulating the proposed structure. For the proposed structure, the maximum delay time is about 3 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  Google Scholar 

  2. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  Google Scholar 

  3. Wang, Y., Chen, D., Zhang, G., Wang, J., Tao, S.: A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors. Opt. Commun. 363, 13–20 (2016)

    Article  Google Scholar 

  4. Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Netw. Commun. 31, 65–70 (2016)

    Article  Google Scholar 

  5. Notomi, M., Shinya, A., Mitsugi, S., Kira, G., Kuramochi, E., Tanabe, T.: Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express 13, 2678 (2005)

    Article  Google Scholar 

  6. Bao, J., Xiao, J., Fan, L., Li, X., Hai, Y., Zhang, T., Yang, C.: All-optical NOR and NAND gates based on photonic crystal ring resonator. Opt. Commun. 329, 109–112 (2014)

    Article  Google Scholar 

  7. Noori, M., Soroosh, M.: A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides. Opt. Int. J. Light Electron Opt. 126, 4775–4781 (2015)

    Article  Google Scholar 

  8. Liu, D., Gao, Y., Tong, A., Hu, S.: Absolute photonic band gap in 2D honeycomb annular photonic crystals. Phys. Lett. A 379, 214–217 (2015)

    Article  Google Scholar 

  9. Alipour-Banaei, H., Mehdizadeh, F.: Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis. J. Opt. Commun. 34, 1–9 (2013)

    Article  Google Scholar 

  10. Diaz-Valencia, B.F., Calero, J.M.: Photonic band gaps of a two-dimensional square lattice composed by superconducting hollow rods. Phys. C Supercond. 505, 74–79 (2014)

    Article  Google Scholar 

  11. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F., Andalib, A.: Band gap properties of two-dimensional photonic crystal structures with rectangular lattice. J. Opt. Commun. 36, 109 (2015)

    Article  Google Scholar 

  12. Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E Low Dimens. Syst. Nanostructures 56, 211–215 (2014)

    Article  Google Scholar 

  13. Alipour-Banaei, H., Jahanara, M., Mehdizadeh, F.: T-shaped channel drop filter based on photonic crystal ring resonator. Opt. Int. J. Light Electron Opt. 125, 5348–5351 (2014)

    Article  Google Scholar 

  14. Djavid, M., Ghaffari, A., Monifi, F., Abrishamian, M.S.: T-shaped channel-drop filters using photonic crystal ring resonators. Phys. E Low Dimens. Syst. Nanostructures 40, 3151–3154 (2008)

    Article  Google Scholar 

  15. Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Channel-drop filter based on a photonic crystal ring resonator. J. Opt. 15, 075401 (2013)

    Article  Google Scholar 

  16. Youcef Mahmoud, M., Bassou, G., Taalbi, A.: A new optical add–drop filter based on two-dimensional photonic crystal ring resonator. Opt. Int. J. Light Electron Opt. 124, 2864–2867 (2013)

    Article  Google Scholar 

  17. Ren, C., Wang, P., Cheng, L., Feng, S., Gan, L., Li, Z.: Multichannel W3 Y-branch filter in a two dimensional triangular-lattice photonic crystal slab. Opt. Int. J. Light Electron Opt. 125, 7203–7206 (2014)

    Article  Google Scholar 

  18. Sahel, S., Amri, R., Bouaziz, L., Gamra, D., Lejeune, M., Benlahsen, M., Zellama, K., Bouchriha, H.: Optical filters using Cantor quasi-periodic one dimensional photonic crystal based on Si/SiO2. Superlattices Microstruct. 97, 429–438 (2016)

    Article  Google Scholar 

  19. Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Phys. E Low Dimens. Syst. Nanostructures 87, 77–83 (2017)

    Article  Google Scholar 

  20. Qiang, Z., Zhou, W., Soref, R.a: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)

    Article  Google Scholar 

  21. Alipour-Banaei, H., Hassangholizadeh-Kashtiban, M., Mehdizadeh, F.: WDM and DWDM optical filter based on 2D photonic crystal Thue–Morse structure. Opt. Int. J. Light Electron Opt. 124, 4416–4420 (2013)

    Article  Google Scholar 

  22. Jiu-Sheng, L., Han, L., Le, Z.: Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal. Opt. Commun. 350, 248–251 (2015)

    Article  Google Scholar 

  23. Gupta, N.D., Janyani, V.: Dense wavelength division demultiplexing using photonic crystal waveguides based on cavity resonance. Opt. Int. J. Light Electron Opt. 125, 5833–5836 (2014)

    Article  Google Scholar 

  24. Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostructures Fundam. Appl. 8, 14–22 (2010)

    Article  Google Scholar 

  25. Reza Rakhshani, M., Ali Mansouri-Birjandi, M.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostructures 50, 97–101 (2013)

    Article  Google Scholar 

  26. Talebzadeh, R., Soroosh, M., Daghooghi, T.: A 4-channel demultiplexer based on 2D photonic crystal using line defect resonant cavity. IETE J. Res. 62, 866–872 (2016)

    Article  Google Scholar 

  27. Mehdizadeh, F., Soroosh, M.: A novel proposal for all optical demultiplexers based on photonic crystal. Optoelectron. Adv. Mater. Commun. 9, 324–328 (2015)

    Google Scholar 

  28. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 124, 5964–5967 (2013)

    Article  MATH  Google Scholar 

  29. Djavid, M., Monifi, F., Ghaffari, A., Abrishamian, M.S.: Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Opt. Commun. 281, 4028–4032 (2008)

    Article  Google Scholar 

  30. Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 124, 5923–5926 (2013)

    Article  Google Scholar 

  31. Momeni, B., Huang, J., Soltani, M., Askari, M., Mohammadi, S., Rakhshandehroo, M., Adibi, A.: Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Opt. Express 14, 2413 (2006)

    Article  Google Scholar 

  32. Balaji, V.R., Murugan, M., Robinson, S.: Optimization of DWDM demultiplexer using regression analysis. J. Nanomater. 2016 (2016). doi:10.1155/2016/9850457

  33. Rawal, S., Sinha, R.K.: Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer. Opt. Commun. 282, 3889–3894 (2009)

    Article  Google Scholar 

  34. Bazargani, H.P.: Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Opt. Commun. 285, 1848–1853 (2012)

    Article  Google Scholar 

  35. Qing-Hua, L., Hong-Ming, F., Shu-Wen, C., Tong-Biao, W., Tian-Bao, Y., Yong-Zhen, H.: The design of large separating angle ultracompact wavelength division demultiplexer based on photonic crystal ring resonators. Opt. Commun. 331, 160–164 (2014)

    Article  Google Scholar 

  36. Khorshidahmad, A., Kirk, A.G.: Composite superprism photonic crystal demultiplexer: analysis and design. Opt. Express 18, 20518–28 (2010)

    Article  Google Scholar 

  37. Sharkawy, A., Shi, S., Prather, D.W., Soref, R.A.: Electro-optical switching using coupled photonic crystal waveguides. Opt. Express 10, 1048 (2002)

    Article  Google Scholar 

  38. Selim, R., Pinto, D., Obayya, S.S.A.: Novel fast photonic crystal multiplexer–demultiplexer switches. Opt. Quantum Electron. 42, 425–433 (2011)

    Article  Google Scholar 

  39. Camargo, E.A., Chong, H.M.H., Rue, RMDLa: 2D Photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure. Opt. Express 12, 588–592 (2004)

    Article  Google Scholar 

  40. Teo, H.G., Liu, A.Q., Singh, J., Yu, M.B., Bourouina, T.: Design and simulation of MEMS optical switch using photonic bandgap crystal. Microsyst. Technol. 10, 400–406 (2004)

    Article  Google Scholar 

  41. Singh, B.R., Rawal, S.: Photonic-crystal-based all-optical NOT logic gate. J. Opt. Soc. Am. A 32, 2260–2263 (2015)

    Article  Google Scholar 

  42. Sharifi, H., Hamidi, S.M., Navi, K.: A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic. Opt. Commun. 370, 231–238 (2016)

    Article  Google Scholar 

  43. Husko, C., Vo, T.D., Corcoran, B., Li, J., Krauss, T.F., Eggleton, B.J.: Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide. In: 2011 international quantum electronics conference (IQEC) and conference on lasers and electro-optics (CLEO) Pacific Rim Inc. Australasian conference on optics, lasers and spectroscopy and the australian conference on optical fibre technology, vol. 19, pp. 158–159 (2011)

  44. Jung, Y.J., Yu, S., Koo, S., Yu, H., Han, S., Park, N., Kim, J.H., Jhon, Y.M., Lee, S.: Reconfigurable all-optical logic AND, NAND, OR, NOR, XOR and XNOR gates implemented by photonic crystal nonlinear cavities. In: Conference on lasers and electro-optics/Pacific Rim, p. TuB4_3. Optical Society of America (2009)

  45. haq Shaik, E., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 48, 1–15 (2016)

    Article  Google Scholar 

  46. Rani, P., Kalra, Y., Sinha, R.K.: Design of all optical logic gates in photonic crystal waveguides. Opt. Int. J. Light Electron Opt. 126, 950–955 (2015)

    Article  Google Scholar 

  47. Moniem, T.A.: All optical active high decoder using integrated 2D square lattice photonic crystals. J. Mod. Opt. 62, 1643–1649 (2015)

    Article  Google Scholar 

  48. Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Effect of self-collimated beams on the operation of photonic crystal decoders. J. Electromagn. Waves Appl. 30, 1440–1448 (2016)

    Article  Google Scholar 

  49. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 48, 20 (2015)

    Article  Google Scholar 

  50. Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 47, 1109–1115 (2014)

    Article  MATH  Google Scholar 

  51. Moniem, T.A.: All-optical digital 4 \(\times \) 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63, 735–741 (2016)

    Article  Google Scholar 

  52. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 130, 1214–1221 (2017)

    Article  MATH  Google Scholar 

  53. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 125, 5701–5704 (2014)

    Article  Google Scholar 

  54. Mehdizadeh, F., Soroosh, M.: Designing of all optical NOR gate based on photonic crystal. Indian J. Pure Appl. Phys. 54, 35–39 (2016)

    Google Scholar 

  55. Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Physica E Low Dimens. Syst. Nanostruct. 83, 101–106 (2016)

  56. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron. 49, 38 (2017)

    Article  Google Scholar 

  57. Miao, B., Chen, C., Sharkway, A., Shi, S., Prather, D.W.: Two bit optical analog-to-digital converter based on photonic crystals. Opt. Express 14, 7966 (2006)

    Article  Google Scholar 

  58. Youssefi, B., Moravvej-Farshi, M.K., Granpayeh, N.: Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals. Opt. Commun. 285, 3228–3233 (2012)

    Article  Google Scholar 

  59. Fasihi, K.: All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals. Opt. Int. J. Light Electron Opt. 125, 6520–6523 (2014)

    Article  Google Scholar 

  60. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt. 56, 1799–1806 (2017)

    Article  Google Scholar 

  61. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 1–11 (2017)

    Article  Google Scholar 

  62. Parandin, F., Karkhanehchi, M.M.: Terahertz all-optical NOR and AND logic gates based on 2D photonic crystals. Superlattices Microstruct. 101, 253–260 (2017)

  63. Wu, K.-S., Dong, J.-W., Chen, D.-H., Luo, X.-N., Wang, H.-Z.: Sensitive photonic crystal phase logic gates. J. Mod. Opt. 56, 1895–1898 (2009)

    Article  Google Scholar 

  64. Liu, Y., Qin, F., Meng, Z.-M., Zhou, F., Mao, Q.-H., Li, Z.-Y.: All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt. Express 19, 1945–53 (2011)

    Article  Google Scholar 

  65. Jiang, Y.-C., Liu, S.-B., Zhang, H.-F., Kong, X.-K.: Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals. Opt. Commun. 348, 90–94 (2015)

    Article  Google Scholar 

  66. Liu, Q., Ouyang, Z., Wu, C.J., Liu, C.P., Wang, J.C.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16, 18992–9000 (2008)

    Article  Google Scholar 

  67. Xavier, S.C., Arunachalam, K., Caroline, E., Johnson, W.: Design of two-dimensional photonic crystal-based all-optical binary adder. Opt. Eng. 52, 25201 (2013)

    Article  Google Scholar 

  68. Karkhanehchi, M.M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. Photonic Netw. Commun. 33, 159–165 (2017)

  69. Alipour-Banaei, H., Mehdizadeh, F.: Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Opt. Int. J. Light Electron Opt. 124, 2639–2644 (2013)

  70. Alipour-Banaei, H., Seif-Dargahi, H.: Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure. Photonics Nanostructures Fundam. Appl. 24, 29–34 (2017)

  71. Liu, Q., Ouyang, Z., Wu, C.J., Liu, C.P., Wang, J.C.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16, 18992–19000 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Soroosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neisy, M., Soroosh, M. & Ansari-Asl, K. All optical half adder based on photonic crystal resonant cavities. Photon Netw Commun 35, 245–250 (2018). https://doi.org/10.1007/s11107-017-0736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0736-6

Keywords

Navigation