Skip to main content
Log in

Towards efficiently migrating virtual networks in cloud-based data centers

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

With the expansion of cloud computing, virtual network (VN) migration becomes the very perspective technology for saving energy, ensuring Service Level Agreements or improving the survivability of virtual networks in cloud networks. At present, the majority of research on the VN migration, however, are for saving energy or improving resource utilizations, and few of them for the entire virtual network migration for guaranteeing QoS or improving the survivability of virtual networks. Since the regional failure, network maintenance or QoS violation, the service provider generally needs to migrate the VN for guaranteeing the QoS or improving the survivability of virtual networks. In the paper, we research the live migration problem of the virtual network to optimize the virtual network migration performance. To efficient migrate virtual network, we present an effective VN migration method, VNM. To control the cost of migration or migration traffic, based on the VNM algorithm, we present an effective VN migration method with migration traffic control, VNM-MTC. We use two networks as substrate networks to simulate the performances of our presented algorithms. From the experiment, we can see that the total VN reconfiguration cost, total VN redeployment cost, total VN migration cost and blocking ratio of our presented algorithms are better than that of the contrast algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ma, C., Colman-Meixner, C., Tornatore, M., et al.: Multiple traveling repairmen problem with virtual networks for post-disaster resilience. In: IEEE ICC, pp. 1–6 (2016)

  2. Sun, G., Anand, V., Liao, D., et al.: Power-efficient provisioning for online virtual network requests in cloud-based datacenters. IEEE Syst. J. 9(2), 427–441 (2015)

    Article  Google Scholar 

  3. Zhang, G., Yang, K., Wei, J., et al.: Virtual resource allocation for wireless virtualization networks using market equilibrium theory. In: IEEE INFOCOM, pp. 366–371 (2015)

  4. Hao, F., Lakshman, T.V., Mukherjee, S., et al.: Enhancing dynamic cloud-based services using network virtualization. ACM SIGCOMM Comput. Commun. Rev. 40(1), 67–74 (2010)

    Article  Google Scholar 

  5. Sun, G., Liao, D., Bu, S., et al.: The efficient framework and algorithm for provisioning evolving VDC in federated data centers. Future Gener. Comput. Syst. 73, 79–89 (2017)

    Article  Google Scholar 

  6. Khan, M.M.A., Shahriar, N., Ahmed, R., et al.: Multi-path link embedding for survivability in virtual networks. IEEE Trans. Netw. Serv. Manag. 13(2), 253–266 (2016)

    Article  Google Scholar 

  7. Chochlidakis, G., Friderikos, V.: Mobility aware virtual network embedding. IEEE Trans. Mob. Comput. 16(5), 1343–1356 (2017)

    Article  Google Scholar 

  8. Sun, G., Yu, H., Anand, V., et al.: Optimal provisioning for virtual network request in cloud-based data centers. Photonic Netw. Commun. 24(2), 118–131 (2012)

    Article  Google Scholar 

  9. Sun, G., Yu, H., Li, L., et al.: Exploring online virtual networks mapping with stochastic bandwidth demand in multi-datacenter. Photonic Netw. Commun. 23(2), 109–122 (2012)

    Article  Google Scholar 

  10. Liao, D., Sun, G., Anand, V., et al.: Opportunistic provisioning for multicast virtual network requests. In: IEEE GLOBECOM, pp. 133–138 (2015)

  11. Chowdhury, M., Raihan Rahman, M., Boutaba, R.: ViNEYard: virtual network embedding algorithms with coordinated node and link mapping. IEEE/ACM Trans. Netw. 1(20), 206–219 (2012)

    Article  Google Scholar 

  12. Wanis, B., Samaan, N., Karmouch, A.: Substrate Network House Cleaning via Live Virtual Network Migration. In: IEEE ICC, pp. 2256–2261 (2013)

  13. Sun, G., Yu, H., Anand, V., et al.: A cost efficient framework and algorithm for embedding dynamic virtual network requests. Future Gener. Comput. Syst. 29(5), 1265–1277 (2013)

    Article  Google Scholar 

  14. Lo, S., Ammar, M., Zegura, E.: Design and Analysis of Schedules for Virtual Network Migration. In: IFIP Networking Conference, pp. 1–9 (2013)

  15. Sun, G., Liao, D., Anand, V., et al.: A new technique for efficient live migration of multiple virtual machines. Future Gener. Comput. Syst. 55, 74–86 (2016)

    Article  Google Scholar 

  16. Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to virtual network components. In: IEEE INFOCOM, pp. 2812–2823 (2006)

  17. Yu, M., Yi, Y., Rexford, J., et al.: Rethinking virtual network embedding: substrate support for path splitting and migration. ACM SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008)

    Article  Google Scholar 

  18. Butt, N.F., Chowdhury, M., Boutaba, R.: Topology-Awareness and Reoptimization Mechanism for Virtual Network Embedding. In: IFIP/TC6 NETWORKING, pp. 27–39 (2010)

  19. Fajjari, I., Aitsaadi, N., Pujolle, G., et al.: VNR Algorithm: A Greedy Approach for Virtual Networks Reconfigurations. In: IEEE GLOBECOM, pp. 1–6 (2011)

  20. Lo, S., Ammar, M., Zegura, E., et al.: Virtual Network Migration on Real Infrastructure: A PlanetLab Case Study. In: IFIP Networking Conference, pp. 1–9 (2014)

  21. Marquezan, C.C., Granville, L.Z., Nunzi, G., et al.: Distributed autonomic resource management for network virtualization. In: Network Operations and Management Symposium (NOMS), pp. 463–470 (2010)

  22. Wang, Y., Keller, E., Biskeborn, B., et al.: Virtual routers on the move: live router migration as a network-management primitive. ACM SIGCOMM Comput. Commun. Rev. 38(4), 231–242 (2008)

    Article  Google Scholar 

  23. Rodriguez, E., Alkmim, G., Batista, D.M., et al.: Energy-aware mapping and live migration of virtual networks. IEEE Syst. J. 11(2), 637–648 (2017)

  24. Chen, X., Phillips, C.: Virtual Router Migration and Infrastructure Sleeping for Energy Management of IP over WDM Networks. In: International Conference on Telecommunications and Multimedia (TEMU), pp. 31–36 (2012)

  25. Mattos, D.M.F., Duarte, O.C.M.B.: XenFlow: Seamless Migration Primitive and Quality of Service for Virtual Networks. In: IEEE GLOBECOM, pp. 2326–2331 (2014)

  26. Arora, D., Bienkowski, M., Feldmann, A., et al.: Online Strategies for Intra and Inter Provider Service Migration in Virtual Networks. In: Principles, Systems and Applications of IP Telecommunications, pp. 1–11 (2011)

  27. Liao, D., Sun, G., Anand, V., et al.: Survivable mapping for multicast virtual network under single regional failure. In: IEEE GLOBECOM, pp. 36–41 (2014)

  28. Liao, D., Sun, G., Anand, V., et al.: Survivable provisioning for multicast service oriented virtual network requests in cloud-based data centers. Opt. Switch. Netw. PART 3, 260–273 (2014)

    Article  Google Scholar 

  29. Cerroni, W.: Multiple Virtual Machine Live Migration in Federated Cloud Systems. In: IEEE INFOCOM, pp. 25–30 (2014)

  30. Cerroni, W., Callegati, F.: Live Migration of Virtual Network Functions in Cloud-Based Edge Networks. In: IEEE ICC, pp. 2963–2968 (2014)

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds of China West Normal University (17D075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San-mei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Sm., Sun, G. & Chang, V. Towards efficiently migrating virtual networks in cloud-based data centers. Photon Netw Commun 35, 151–164 (2018). https://doi.org/10.1007/s11107-017-0739-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0739-3

Keywords

Navigation