Skip to main content
Log in

Low loss and low dispersion hybrid core photonic crystal fiber for terahertz propagation

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, a hybrid-core circular cladded photonic crystal fiber is designed and analyzed for application in the terahertz frequency range. We introduce a rectangular structure in addition to a conventional hexagonal structure in the core to reduce the material absorption loss. The modal characteristics of the fiber have been investigated using full vector finite element method. Simulated results exhibit an ultra-low effective material loss of 0.035 cm\(^{-1}\) and ultra-flattened dispersion of 0.07 ps/THz/cm. Some other important fiber characteristics suitable for terahertz signal transmission including confinement loss, core power fraction, effective area and single-mode conditions of the fiber have also been investigated. In order to simplify design and facilitate fabrication, only circular shaped air holes have been employed. Due to its promising characteristics, the proposed waveguide may provide efficient transmission of broadband terahertz signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abbott, D., Zhang, X.C.: Scanning the issue: T-ray imaging, sensing, and retection. Proc. IEEE 95(8), 1509–1513 (2007)

    Article  Google Scholar 

  2. Withayachumnankul, W., Png, G.M., Yin, X., Atakaramians, S., Jones, I., Lin, H., Ung, B.S.Y., Balakrishnan, J., Ng, B.W.-H., Ferguson, B., Mickan, S.P., Fischer, B.M., Abbott, D.: T-ray sensing and imaging. Proc. IEEE 95(8), 1528–1558 (2007)

    Article  Google Scholar 

  3. Islam, M.I., Ahmed, K., Sen, S., Chowdhury, S., Paul, B.K., Islam, M.S., Asaduzzaman, S.: Design and optimization of photonic crystal fiber based sensor for gas condensate and air pollution monitoring. Photonic Sens 7(3), 234–245 (2017)

    Article  Google Scholar 

  4. Uthman, M., Rahman, B.M.A., Kejalakshmy, N., Agrawal, A., Grattan, K.T.V.: Design and characterization of low-loss photonic crystal fiber. IEEE Photonics J. 4(6), 2315–2325 (2012)

    Article  Google Scholar 

  5. Byrne, M.B., Shaukat, M.U., Cunningham, J.E., Linfield, E.H., Davies, A.G.: Simultaneous measurement of orthogonal components of polarization in a free-space propagating terahertz signal using electro optic detection. Appl. Phys. Lett. 98(15), 151104 (2011)

    Article  Google Scholar 

  6. Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photon 1, 97–105 (2007)

    Article  Google Scholar 

  7. Mantsch, H.H., Naumann, D.: Terahertz spectroscopy: the renaissance of far infrared spectroscopy. J. Mol. Struct. 964(1–3), 1–4 (2010)

    Article  Google Scholar 

  8. Leahy-Hoppa, M.R., Fitch, M.J., Osiander, R.: Terahertz spectroscopy techniques for explosive detection. Anal. Bioanal. Chem. 395(2), 247–257 (2009)

    Article  Google Scholar 

  9. Pinto, D., Obayya, S.S.A.: Improved complex envelope alternative direction implicit finite difference time domain method for photonic bandgap cavities. IEEE J. Lightwave Technol. 25(1), 440–447 (2007)

    Article  Google Scholar 

  10. Ahmed, K., Chowdhury, S., Paul, B.K., Islam, M.S., Sen, S., Islam, M.I., Asaduzzaman, S.: Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. Appl. Opt. 56, 3477–3483 (2017)

    Article  Google Scholar 

  11. Jin, Y.-S., Kim, G.-J., Jeon, S.-G.: Terahertz dielectric properties of polymers. J. Korean Phys. Soc. 49(2), 513–517 (2006)

    Google Scholar 

  12. Wang, K., Mittleman, D.M.: Metal wires for terahertz waveguiding. Nature 432, 376–379 (2004)

    Article  Google Scholar 

  13. Bowden, B., Harrington, J.A., Mitrofanov, O.: Silver/polystyrenecoated hollow glass waveguides for the transmission of terahertz radiation. Opt. Lett. 32(20), 2945–2947 (2007)

    Article  Google Scholar 

  14. Chen, L., Chen, H., Kao, T., Lu, J., Sun, C.: Low-loss sub-wavelength plastic fiber for terahertz wave guiding. Opt. Lett. 31(3), 308–310 (2006)

    Article  Google Scholar 

  15. Lu, J.Y., Yu, C.P., Chang, H.C., Chen, H., Li, Y., Pan, C., Sun, C.: Terahertz air-core microstructure fiber. Appl. Phys. Lett. 92(6), 064105 (2008)

    Article  Google Scholar 

  16. Skorobogatiy, M., Dupuis, A.: Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Appl. Phys. Lett. 90(11), 113514 (2007)

    Article  Google Scholar 

  17. Zhao, G., Mors, M.T., Wenckebach, T., Planken, P.C.M.: Terahertz dielectric properties of polystyrene foam. J. Opt. Soc. Am. B. 19(6), 1476–1479 (2002)

    Article  Google Scholar 

  18. Birks, T.A., Knight, J.C., Russell, P.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22(6), 961–963 (1997)

    Article  Google Scholar 

  19. Knight, J.C., Birks, T.A., Cregan, R.F.: Large mode area photonic crystal fibre. Electron. Lett. 34, 1347–1348 (1998)

    Article  Google Scholar 

  20. Lee, J.H., The, P.C., Yusoff, Z.: A holey fiber based nonlinear thresholding device for optical CDMA receiver performance enhancement. IEEE Photon. Technol. Lett. 14(6), 876–878 (2002)

    Article  Google Scholar 

  21. Lu, S., Li, W., Guo, H.: Analysis of birefringent and dispersive properties of photonic crystal fibers. Appl. Opt. 50(30), 5798–5802 (2011)

    Article  Google Scholar 

  22. Ademgil, H., Haxha, S., Abdel Malek, F.: Highly nonlinear bending insensitive birefringent photonic crystal fibres. Sci. Res. 2(8), 608–616 (2010)

    Google Scholar 

  23. Hassani, A., Dupuis, A., Skorobogatiy, M.: Low loss porous terahertz fibers containing multiple subwavelength holes. Appl. Phys. Lett. 92(7), 071101 (2008)

    Article  Google Scholar 

  24. Hassani, A., Dupuis, A., Skorobogatiy, M.: Porous polymer fibers for low-loss terahertz guiding. Opt. Express 16(9), 6340–6351 (2008)

    Article  Google Scholar 

  25. Han, H., Park, H., Cho, M., Kim, J.: Terahertz pulse propagation in a plastic photonic crystal fiber. Appl. Phys. Lett. 80(15), 2634–2636 (2002)

    Article  Google Scholar 

  26. Ung, B., Mazhorova, A., Dupuis, A., Rozé, M., Skorobogatiy, M.: Polymer microstructured optical fibers for terahertz wave guiding. Opt. Express 19(26), B848–B861 (2011)

    Article  Google Scholar 

  27. Sultana, J., Islam, MdS, Atai, J., Islam, M.R., Abbott, D.: Near-zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission. Opt. Eng. 56(7), 076114 (2017)

    Article  Google Scholar 

  28. Islam, M.S., Sultana, J., Atai, J., Islam, M.R., Abbott, D.: Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for terahertz wave propagation. Optik–Int. J. Light Electron Opt. 145, 398–406 (2017)

    Article  Google Scholar 

  29. Bao, H., Nielsen, K., Rasmussen, H.K., Jepsen, P.U., Bang, O.: Fabrication and characterization of porous-core honeycomb bandgap THz fibers. Opt. Express 20(28), 29507–29517 (2012)

    Article  Google Scholar 

  30. Kaijage, S.F., Ouyang, Z., Jim, X.: Porous-core photonic crystal fiber for low loss terahertz wave guiding. IEEE Photonics Technol. Lett. 25(15), 1454–1457 (2013)

    Article  Google Scholar 

  31. Islam, R., Hasanuzzaman, G.K.M., Habib, M.S., Rana, S., Khan, M.A.G.: Low-loss rotated porous core hexagonal single-mode fiber in THz regime. Opt. Fiber Technol. 24, 38–43 (2015)

    Article  Google Scholar 

  32. Hasanuzzaman, G.K.M., Habib, S., Razzak, S.M.A.: Low loss single-mode porous-core kagome photonic crystal fiber for THz wave guidance. J. Lightwave Technol. 33(19), 4027–4031 (2015)

    Article  Google Scholar 

  33. Islam, M.S., Rana, S., Islam, M.R., Faisal, M., Rahman, H., Sultana, J.: Porous core photonic crystal fiber for ultra-low material loss in THz regime. IET Commun. 10(16), 2179–2183 (2016)

    Article  Google Scholar 

  34. Islam, S., Islam, M.R., Faisal, M., Arefin, A.S.M.S., Rahman, H., Sultana, J., Rana, Sohel: Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime. Opt. Eng. 55(7), 076117 (2016)

    Article  Google Scholar 

  35. Islam, R., Habib, M.S., Hasanuzzaman, G.K.M., Rana, S., Sadath, M.A., Markos, C.: A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission. IEEE Photonics Technol. Lett. 28(14), 1737–1740 (2016)

    Article  Google Scholar 

  36. Hasan, M.R., Akter, S., Khatun, T., Rifat, A.A., Anower, M.S.: Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance. Opt. Eng. 56(4), 043108 (2017)

    Article  Google Scholar 

  37. Ponseca, C.S., Pobre, R., Estacio, E., Sarukura, N., Argyros, A., Large, M.C.J., van Eijkelenborg, M.A.: Transmission of terahertz radiation using a micro-structured polymer optical fiber. Opt. Lett. 33(9), 902–904 (2008)

    Article  Google Scholar 

  38. Goto, M., Quema, A., Takahashi, H., Ono, S., Sarukura, N.: Teflon photonic crystal fiber as terahertz waveguide. Jpn. J. Appl. Phys. 43(2B), 317–319 (2004)

    Article  Google Scholar 

  39. Nielsen, K., Rasmussen, H.K., Adam, A.J.L., Planken Jepsen, P.C.M., Bang, O., Uhd, P.: Bendable, low-loss TOPAS fibers for the terahertz frequency range. Opt. Express 17(10), 8592–8601 (2004)

    Article  Google Scholar 

  40. Tang, X., Jiang, Y., Sun, B., Chen, J., Zhu, X., Zhou, P., Wu, D., Shi, Y.: Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission. IEEE Photonics Technol. Lett. 25(4), 331–334 (2013)

    Article  Google Scholar 

  41. Argyros, A.: Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials. ISRN Opt. 2013, 785162 (2013)

    Article  Google Scholar 

  42. Islam, M.S., Sultana, J., Rana, S., Islam, M.R., Faisal, M., Kaijage, S.F., Abbott, D.: Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt. Fiber Technol. 24, 6–11 (2016)

    Google Scholar 

  43. Markos, C., Stefani, A., Nielsen, K., Rasmussen, H.K., Yuan, W., Bang, O.: High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt. Express 21(4), 4758–4785 (2013)

    Article  Google Scholar 

  44. Emiliyanov, G., Jensen, J.B., Bang, O., Hoiby, P.E., Pedersen, L.H., Kjaer, E.M., Lindvold, L.: Localized bio-sensing with TOPAS micro-structured polymer optical fiber. Opt. Lett. 32(5), 460–462 (2007)

    Article  Google Scholar 

  45. Balakrishnan, J., Fischer, B.M., Abbott, D.: Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy. Appl. Opt. 48(12), 2262–2266 (2009)

    Article  Google Scholar 

  46. Woyessa, G., Fasano, A., Stefani, A., Markos, C., Nielsen, K., Rasmussen, H.K., Bang, O.: Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Opt. Express 24(2), 1253–1260 (2016)

    Article  Google Scholar 

  47. Islam, M.S., Sultana, J., Atai, J., Abbott, D., Rana, S., Islam, M.R.: Ultra low loss hybrid core porous fiber for broadband applications. Appl. Opt. 56(9), 1232–1237 (2017)

  48. Bai, J.J., Li, J.N., Zhang, H., Fang, H.: A porous terahertz fiber with randomly distributed air holes. Appl. Phys. B 103(2), 381–386 (2011)

    Article  Google Scholar 

  49. Kiang, K.M., Frampton, K., Monro, T.M., Moore, R., Tucknott, J., Hewak, D.W., Richardson, D.J., Rutt, H.N.: Extruded singlemode non-silica glass holey optical fibres. Electron. Lett. 38(12), 546–547 (2002)

    Article  Google Scholar 

  50. Bisen, R. T., Trevor, D. J.: Solgel-derived micro-structured fibers: fabrication and characterization, Opt. Fiber Commun. Conference., Technical Digest. OFC/NFOEC. https://doi.org/10.1109/OFC.2005.192772 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Saiful Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.S., Sultana, J., Dorraki, M. et al. Low loss and low dispersion hybrid core photonic crystal fiber for terahertz propagation. Photon Netw Commun 35, 364–373 (2018). https://doi.org/10.1007/s11107-017-0751-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0751-7

Keywords

Navigation