Skip to main content
Log in

Quality-focused resource allocation for resilient 5G network

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The upcoming 5G cellular wireless network brings new challenges and problematic issues in providing services with different quality of service (QoS) requirements and serving huge amount of mobile devices in a spectrum-efficient manner. 5G-based systems will combine macrocells, different type of small cells and heterogeneous networks. As a result of this combination, a 5G-based network will feature a sophisticated multi-layered architecture, and a proper resource allocation will become a major challenge for it. A reliable provision of services as well. In this paper, the analysis of the impact of different QoS schedule algorithms (Round Robin, Best CQI and PF) to the allocation of resources and a reliability of data transmission in 5G network was carried out. Also, the relation of QoS characteristics (BER, data loss) to the perceptual evaluation of service quality by the end user in different ways of the resource allocation on 5G network was investigated also. The perceptual evaluation of a service quality, known as Quality of Experience, was investigated using mean opinion score method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. VanGiang, N., Anna, B., KarlJohan, G., Javid, T.: 5G Mobile Networks, ch. 2, pp. 31–57. Wiley, New York (2018)

    Google Scholar 

  2. Marsch, P., Da Silva, I., Bulakci, O., Tesanovic, M., El Ayoubi, S.E., Rosowski, T., Kaloxylos, A., Boldi, M.: 5G radio access network architecture: design guidelines and key considerations. IEEE Commun. Mag. 54(11), 24–32 (2016)

    Article  Google Scholar 

  3. Zou, J., Wagner, C., Eiselt, M.: Optical fronthauling for 5G mobile: a perspective of passive metro WDM technology. In: Optical Fiber Communication Conference. Optical Society of America, p. W4C.2 (2017)

  4. Infrastructure Association, et al.: 5G vision—the 5G infrastructure public private partnership; the next generation of communication networks and services, White Paper. Brussels (2015, February)

  5. Chen, K., Duan, R.: C-RAN the road towards green RAN, White Paper, vol. 2. China Mobile Research Institute (2011)

  6. Lin, Y., Shao, L., Zhu, Z., Wang, Q., Sabhikhi, R .K.: Wireless network cloud: architecture and system requirements. IBM J. Res. Dev. 54, 4:1–4:12 (2010)

    Article  Google Scholar 

  7. Checko, A., Avramova, A.P., Berger, M.S., Christiansen, H.L.: Evaluating c-ran fronthaul functional splits in terms of network level energy and cost savings. J. Commun. Netw. 18, 162–172 (2016)

    Article  Google Scholar 

  8. Huawei: 5G Network Architecture: A High-Level Perspective. White Paper. Huawei Technologies Co, Shenzhen (2016)

  9. Murphy, K.: Centralized ran and fronthaul, White Paper. Ericsson, Stockholm (2015)

    Google Scholar 

  10. Skubic, B., Fiorani, M., Tombaz, S., Furuskär, A., Mårtensson, J., Monti, P.: Optical transport solutions for 5G fixed wireless access. J. Opt. Commun. Netw. 9, D10–D18 (2017)

    Article  Google Scholar 

  11. Honda, K., Nakamura, H., Hara, K., Sone, K., Nakagawa, G., Hirose, Y., Hoshida, T., Terada, J., Otaka, A.: Wavelength adjustment of upstream signal using amcc with power monitoring for WDM-PON in 5G mobile era. In: Optical Fiber Communication Conference. Optical Society of America, p. Tu3L.4 (2018)

  12. Suzuki, N., Miura, H., Matsuda, K., Matsumoto, R., Motoshima, K.: 100 gb/s to 1 tb/s based coherent passive optical network technology. J. Lightwave Technol. 36, 1485–1491 (2018)

    Article  Google Scholar 

  13. Jia, Z., Yu, J., Chien, H.C., Dong, Z., Huo, D.D.: Field transmission of 100 g and beyond: multiple baud rates and mixed line rates using Nyquist-WDM technology. J. Lightwave Technol. 30, 3793–3804 (2012)

    Article  Google Scholar 

  14. Bao, X., Wang, G., Hou, Z., Xu, M., Peng, L., Han, H.: WDM switch technology application in smart substation communication network. In: 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), pp. 2373–2376 (2015)

  15. Hossain, E., Hasan, M.: 5G cellular: Key enabling technologies and research challenges. CoRR (2015). arXiv1503.00674

  16. Hajjawi, A., Ismail, M., Abdullah, N. F., Hindia, M. N., Al-Samman, A. M., Hanafi, E.: Investigation of the impact of different scheduling algorithm for macro-femto-cells over lte-a networks. In: 2016 IEEE 3rd International Symposium on Telecommunication Technologies (ISTT). IEEE, pp. 125–128 (2016)

  17. Ghariani, T., Jouaber, B.: Energy consumption evaluation for lte scheduling algorithms. In: 2015 International Symposium on Networks, Computers and Communications (ISNCC). IEEE, pp. 1–5 (2015)

  18. Ghasemzadeh, M.: Qos based resource management for cloud environment. Master thesis (2016)

  19. Nikaein, N., Schiller, E., Favraud, R., Knopp, R., Alyafawi, I., Braun, T.: Towards a cloud-native radio access network. Advances in Mobile Cloud Computing and Big Data in the 5G Era, pp. 171–202. Springer, Berlin (2017)

    Chapter  Google Scholar 

  20. Chang, C. Y., Schiavi, R., Nikaein, N., Spyropoulos, T., Bonnet, C.: Impact of packetization and functional split on c-ran fronthaul performance. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–7 (2016)

  21. Khalili, S., Simeone, O.: Uplink harq for cloud ran via separation of control and data planes. IEEE Trans. Veh. Technol. 66, 4005–4016 (2017)

    Article  Google Scholar 

  22. Peng, M., Sun, Y., Li, X., Mao, Z., Wang, C.: Recent advances in cloud radio access networks: system architectures, key techniques, and open issues. IEEE Commun. Surv. Tutor. 18, 2282–2308 (2016)

    Article  Google Scholar 

  23. Tran, T.X., Hajisami, A., Pompili, D.: Cooperative hierarchical caching in 5G cloud radio access networks. IEEE Netw. 31(4), 35–41 (2017)

    Article  Google Scholar 

  24. Fakhri, Z. H., Khan, M., Sabir, F., Al-Raweshidy, H. S.: A resource allocation mechanism for cloud radio access network based on cell differentiation and integration concept. IEEE Trans. Netw. Sci. Eng. 5(4), 261–275 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research is based upon work from COST Action CA15127 (Resilient communication services protecting end-user applications from disaster-based failures—RECODIS) supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasa Bruzgiene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruzgiene, R., Narbutaite, L. & Adomkus, T. Quality-focused resource allocation for resilient 5G network. Photon Netw Commun 37, 361–375 (2019). https://doi.org/10.1007/s11107-018-00820-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-00820-0

Keywords

Navigation