Skip to main content
Log in

Compact \(3\times 3\) wavelength routing for photonic integrated circuits

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Photonic integrated circuits are the future of optical communication networks. The demand for high bandwidth has added a remarkable increase in the capacity of transmission and routing techniques for optical networks. With massive growth in photonic integrated circuits, communication within them (PIC) is an area that needs to be explored and addressed. The signal path between different components in the circuit has to be established for an optimal path with high transmission efficiency. This could be achieved using routers. With this being the intention, this paper proceeds with a design of two \(3\,\times \,3\) optical passive wavelength routers using photonic crystal ring resonators. The designed router connects three transmitters to three receivers with desired characteristics such as low crosstalk, less propagation delay, low insertion loss and can be easily fabricated because of its less complex design. The routers are designed to operate in third transmission window wavelength with basic building blocks of \(1\,\times \,2\) routers. The designed layout of routers exhibits good performance which can be used for all optical communication networks and has a good technological compatibility for chip level integration in PIC. The layout is simulated using finite difference time domain and plane wave expansion methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. Liu, L., Dong, J., Gao, D., Zheng, A., Zhang, X.: On-chip passive three-port circuit of all-optical ordered-route transmission. Sci. Rep. 5, 10190 (2015). https://doi.org/10.1038/srep10190

    Article  Google Scholar 

  2. Sherwood-Droz, N.: Optical \(4\times 4\) hitless silicon router for optical networks-on-chip (NoC). Opt. Express 16(20), 15915 (2008)

    Article  Google Scholar 

  3. Dmitriev, V., Portela, G., Martins, L.: Photonic crystal-based circulators with three and four ports for sub-terahertz region. Photon. Netw. Commun. 33, 303–312 (2017). https://doi.org/10.1007/s11107-016-0641-4

    Article  Google Scholar 

  4. Sathyadevaki, R., Sundar, D.S., Raja, A.S.: Design of dual ring wavelength filters for WDM applications. Opt. Commun. Elsevier 380(1), 409–418 (2016). https://doi.org/10.1016/j.optcom.2016.06.045

    Article  Google Scholar 

  5. Biberman, A., Lee, B.G., Sherwood-Droz, N., Lipson, M., Bergman, K.: Broadband operation of nano photonic router for silicon photonic networks-on-chip. IEEE Photon. Technol. Lett. 22(12), 926–928 (2010). https://doi.org/10.1109/LPT.2010.2047850

    Article  Google Scholar 

  6. Mehdizadeh, F., Soroosh, M.: A new proposal for eight channel optical demultiplexer based on photonic crystal resonant cavities. Photon. Netw. Commun. 31, 65–70 (2016). https://doi.org/10.1007/s11107-015-0531-1

    Article  Google Scholar 

  7. Umamaheswari, C., Shanmuga Sundar, D., Sivanantha Raja, A.: Exploration of photonic crystal circulator based on gyromagnetic properties and scaling of ferrite materials. Opt. Commun. Elsevier 382(1), 186–195 (2017). https://doi.org/10.1016/j.optcom.2016.07.065

    Article  Google Scholar 

  8. Shacham, A., Bergman, K., Carloni, L.P.: On the design of a photonic network-on-chip. In: IEEE, Proceedings of the First International Symposium on Networks-on-Chip (NOCS’07), 0-7695-2773-6/07 (2007)

  9. Qiang, Z., Zhou, W., Soref, R.A.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15(4), 1823–1831 (2007)

    Article  Google Scholar 

  10. Qiang, Z., Zhou, W., Soref, R.A., Ma, Z.: Ultra-compact polymer and silicon modulator design based on photonic crystal ring resonators. SPIE Proc. 6896, 68960B (2008)

    Article  Google Scholar 

  11. Chiu, W.-Y., Huang, T.-W., Wu, Y.-H., Chan, Y.-J., Hou, C.-H., Chien, H.-T., Chen, C.-C.: A photonic crystal ring resonator formed by SOI nano-rods. Opt. Express 15(23), 15500–15506 (2007)

    Article  Google Scholar 

  12. Tsarev, A.V., De Leonardis, F., Passaro, V.M.N.: Thin heterogeneous SOI waveguides for Thermo-optical tuning and filtering. Opt. Express 16(5), 3101–3113 (2008)

    Article  Google Scholar 

  13. Passaro, V.M.N., Dell’Olio, F.: Scaling and optimization of MOS optical modulators in nanometer SOI waveguides. IEEE Trans. Nanotechnol. 7(4), 401–408 (2008)

    Article  Google Scholar 

  14. Calò, G., Petruzzelli, V.: Photonic interconnects for chip multiprocessing architectures. In: Presented at the Proc. 14th ICTON, Jul. 2–5 (2012)

  15. Kazmierczak, Bogaerts, W., Drouard, E., Dortu, F., Rojo-Romeo, P., Gaffiot, F., Van Thourhout, D., Giannone, D.: Highly integrated optical \(4\times 4\) crossbar in silicon-on-insulator technology. J. Lightw. Technol. 27(6), 3317–3323 (2009)

    Article  Google Scholar 

  16. Lu, J., Ren, H., Guo, S., Wu, Z., Qin, Y., Hu, W., Jiang, C.: Wavelength routers with low crosstalk using photonic crystal point defect microcavities. Opt. Int. J Light Electron Opt. 127(6), 3235–3242 (2015). https://doi.org/10.1016/j.ijleo.2015.11.235

    Article  Google Scholar 

  17. Calo, G., Petruzzelli, V.: Wavelength routers for optical networks-on-chip using optimized photonic crystal ring resonators. IEEE Photon. J. 5(3), 7901011 (2013). https://doi.org/10.1109/JPHOT.2013.2264278

    Article  Google Scholar 

  18. Shacham, A., Bergman, K., Carloni, L.P.: On the design of a photonic network-on-chip. In: IEEE, Proceedings of the First International Symposium on Networks-on-Chip (NOCS’07), 0-7695-2773-6/07 (2007)

  19. Calo, G., Petruzzelli, V.: Compact design of photonic crystal ring resonator \(2\times 2\) routers as building blocks for photonic network on chip. J. Opt. Soc. Am. B 31(3), 517–525 (2014)

    Article  Google Scholar 

  20. Mahmoud, M.Y., Bassou, G., Taalbi, A.: A new optical add-drop filter based on two-dimensional photonic crystal ring resonator. Opt. Int. J. Light Electron Opt. 124, 2864–2867 (2013)

    Article  Google Scholar 

  21. Robinson, S., Nakkeeran, R.: Investigation on parameters affecting the performance of two-dimensional photonic crystal based band pass filter. Opt. Quantum Electron. 43(6), 69–82 (2012)

    Article  Google Scholar 

  22. Sathyadevaki, R., Raja, A.S., Sundar, D.S.: Photonic crystal-based optical filter: a brief investigation. Netw. Commun, Photon (2016). https://doi.org/10.1007/s11107-016-0620-9

    Google Scholar 

  23. Lu, T.-W., Lin, P.-T., Sio, K.-U., Lee, P.-T.: Square lattice photonic crystal point-shifted nanocavity with lowest-order whispering gallery mode. Opt. Express 18(3), 2566–2572 (2010)

    Article  Google Scholar 

  24. Sukhoivanov, I.A., Guryev, I.V.: Physics and Practical Modeling. Springer series in Optical Sciences, Berlin (2009)

    Google Scholar 

  25. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals Molding the Flow of Light. Princeton University press, Princeton (2008)

    MATH  Google Scholar 

  26. Wu, C.J., Liu, C.P., Quyang, Z.: Compact and low-power optical logic NOT gate based on photonic crystal waveguides without optical amplifiers and nonlinear materials. Appl. Opt. 5(5), 680–685 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors would like to thank “Visvesvaraya Ph.D. Scheme for Electronics and IT”—DeitY, for supporting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sridarshini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridarshini, T., Gandhi, S.I. Compact \(3\times 3\) wavelength routing for photonic integrated circuits. Photon Netw Commun 36, 68–81 (2018). https://doi.org/10.1007/s11107-018-0757-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0757-9

Keywords

Navigation