Skip to main content
Log in

On spatially disjoint lightpaths in optical networks

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The core network in the information communication technology infrastructure is based on the optical fiber technology. The core network is of prime importance because it connects all the central offices in the wired communication networks and the mobile switching centers in the wireless communication networks. The optical link between two network nodes is a lightpath, which offers very high speed, low loss, lower cost, highly reliable, secure and very high capacity, end-to-end communication over a very long distance. Any damage to a lightpath in the event of a disaster may lead to massive service interruptions and financial losses for the network operators. Therefore, survivable routing in these networks is very important. Generally, the survivability is ensured by having a backup lightpath to keep communication intact because the primary and the backup light paths are always disjoint. However, they may still fail simultaneously in the event of a large-scale disaster, if their separation distance in the physical plane is small. Hence, the spatial distance between the disjoint lightpaths should also be taken into consideration when establishing the lightpaths. Our contributions in this paper are twofold: (1) a routing algorithm is proposed for provisioning a pair of link-disjoint lightpaths between two network nodes such that their minimum spatial distance (while disregarding safe regions) is maximized, and (2) another routing algorithm is proposed for provisioning a pair of link-disjoint lightpaths such that the path weight of the primary lightpath is minimized, subject to the constraint that the backup lightpath has some particular geographical distance from the primary lightpath. Through extensive simulations, we show that our first algorithm can provide maximum survivability against spatial-based simultaneous link failures (due to the maximized spatial distance), whereas the second algorithm can tune the spatial distance between the lightpaths keeping in view the target survivability requirements and the path weight for the primary lightpath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sterbenz, J.P., Hutchison, D., Çetinkaya, E.K., Jabbar, A., Rohrer, J.P., Schöller, M., et al.: Resilience and survivability in communication networks: strategies, principles, and survey of disciplines. Comput. Netw. 54, 1245–1265 (2010)

    Article  MATH  Google Scholar 

  2. Borland, J.: Analyzing the internet collapse. MIT Technology Review (2008). http://www.nrcc.cornell.edu/page_ccd.html

  3. Seismonepal website. http://seismonepal.gov.np/

  4. Dawadi, B.R., Shakya, S.: ICT implementation and infrastructure deployment approach for rural Nepal. In: Meesad, P., Boonkrong, S., Unger, H. (eds.) Recent Advances in Information and Communication Technology 2016, pp. 319–331. Springer, Cham (2016)

  5. Mexico Earthquake Fact Sheet #5 (29-09-2017). https://www.usaid.gov/sites/default/files/documents/1866/mexico_eq_fs05_09-29-2017.pdf

  6. Tallon, P.P.: Corporate governance of big data: perspectives on value, risk, and cost. Computer 46, 32–38 (2013)

    Article  Google Scholar 

  7. Iqbal, F., Trajanovski, S., Kuipers, F.: Detection of spatially-close fiber segments in optical networks. In: 12th International Conference on the Design of Reliable Communication Networks (DRCN), pp. 95–102 (2016)

  8. url(http://www.computing.co.uk/ctg/news/1937275/bt-reveals-hotlyanticipated-pricing-proposals-duct-pole-access)

  9. Asplund, M., Nadjm-Tehrani, S., Sigholm, J. : Emerging information infrastructures: cooperation in disasters. In: International Workshop on Critical Information Infrastructures Security, pp. 258–270 (2008)

  10. Rak, J., Hutchison, D., Calle, E., Gomes, T., Gunkel, M., Smith et al., P.: RECODIS: resilient communication services protecting end-user applications from disaster-based failures. In: 2016 18th International Conference on Transparent Optical Networks (ICTON), pp. 1–4 (2016)

  11. Maier, G., Pattavina, A., De Patre, S., Martinelli, M.: Optical network survivability: protection techniques in the WDM layer. Photon. Netw. Commun. 4, 251–269 (2002)

    Article  Google Scholar 

  12. Dikbiyik, F., Tornatore, M., Mukherjee, B.: Minimizing the risk from disaster failures in optical backbone networks. J. Lightw. Technol. 32, 3175–3183 (2014)

    Article  Google Scholar 

  13. Neumayer, S., Modiano, E.: Network reliability with geographically correlated failures. Proc. IEEE INFOCOM 2010, 1–9 (2010)

    Google Scholar 

  14. Dikbiyik, F., Reaz, A. S., De Leenheer, M., Mukherjee, B.: Minimizing the disaster risk in optical telecom networks. In: Optical Fiber Communication Conference, p. OTh4B.2 (2012)

  15. Agarwal, P.K., Efrat, A., Ganjugunte, S.K., Hay, D., Sankararaman, S., Zussman, G.: The resilience of WDM networks to probabilistic geographical failures. IEEE ACM Trans. Netw. 21, 1525–1538 (2013)

    Article  Google Scholar 

  16. Mukherjee, B., Habib, M., Dikbiyik, F.: Network adaptability from disaster disruptions and cascading failures. IEEE Commun. Mag. 52, 230–238 (2014)

    Article  Google Scholar 

  17. Neumayer, S., Efrat, A., Modiano, E.: Geographic max-flow and min-cut under a circular disk failure model. Comput. Netw. 77, 117–127 (2015)

    Article  Google Scholar 

  18. Trajanovski, S., Kuipers, F.A., Ilić, A., Crowcroft, J., Van Mieghem, P.: Finding critical regions and region-disjoint paths in a network. IEEE ACM Trans. Netw. 23, 908–921 (2015)

    Article  Google Scholar 

  19. Iqbal, F., Kuipers, F.: Spatiotemporal risk-averse routing. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 395–400 (2016)

  20. Agrawal,A., Sharma,P., Bhatia, V., Prakash, S.: Survivability Improvement Against Earthquakes in Backbone Optical Networks Using Actual Seismic Zone Information. arXiv:1703.02358, (2017)

  21. Awaji, Y., Furukawa, H., Xu, S., Shiraiwa, M., Wada, N., Tsuritani, T.: Resilient optical network technologies for catastrophic disasters. J. Opt. Commun. Netw. 9, A280–A289 (2017)

    Article  Google Scholar 

  22. Galdamez, C., Ye, Z.: Resilient virtual network mapping against large-scale regional failures. In: Wireless and Optical Communication Conference (WOCC), 2017, pp. 1–4 (2017)

  23. de Sousa, A., Santos, D., Monteiro, P.: Determination of the minimum cost pair of D-geodiverse paths. In: 13th International Conference Design of Reliable Communication Networks, pp. 1–8 (2017)

  24. Neumayer, S., Zussman, G., Cohen, R., Modiano, E.: Assessing the vulnerability of the fiber infrastructure to disasters. IEEE ACM Trans. Netw. 19, 1610–1623 (2011)

    Article  Google Scholar 

  25. Foster, Jr., J. S., Gjelde, E., Graham, W. R., Hermann, R. J., Kluepfel, H. M., Lawson et al., R. L.: Report of the commission to assess the threat to the united states from electromagnetic pulse (EMP) attack: critical national infrastructures. Electromagnetic pulse (EMP) Commission. Mclean, VA (2008)

  26. Agarwal, P.K., Har-Peled, S., Kaplan, H., Sharir, M.: Union of random Minkowski sums and network vulnerability analysis. Discrete Comput. Geom. 52, 551–582 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Banerjee, S., Shirazipourazad, S., Sen, A.: On region-based fault-tolerant design of distributed file storage in networks. In: 2012 Proceedings IEEE INFOCOM, pp. 2806–2810 (2012)

  28. Naor, M., Roth, R.M.: Optimal file sharing in distributed networks. SIAM J. Comput. 24, 158–183 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang, A., Bruck, J.: Memory allocation in information storage networks. In: Proceedings of the IEEE International Symposium on in Information Theory, 2003, p. 453 (2003)

  30. Jiang, A.A., Bruck, J.: Network file storage with graceful performance degradation. ACM Trans Storage 1, 171–189 (2005)

    Article  Google Scholar 

  31. Trajanovski, S., Kuipers, F.A., Van Mieghem, P.: Finding critical regions in a network. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2013, pp. 223–228 (2013)

  32. Wang, J., Bigham, J., Phillips, C.: A geographical proximity aware multi-path routing mechanism for resilient networking. IEEE Commun. Lett. 21, 1533 (2017)

    Article  Google Scholar 

  33. Yen, J.Y.: Finding the k shortest loopless paths in a network. Manag. Sci. 17, 712–716 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ardon, M., Malik, N.: A recursive algorithm for generating circuits and related subgraphs. In: 5th Asilomar Conference on Circuits and Systems, pp. 279–284 (1971)

  35. Tsukiyama, S., Shirakawa, I., Ozaki, H.: An algorithm for generating all the paths between two vertices in a digraph and its application. Technol. Rep. Osaka Univ. 26, 411–418 (1976)

    Google Scholar 

  36. Mehlhorn, K., Orlin, J., Tarjan, R.: Faster algorithms for the shortest path problem. Technical Report CS-TR-154-88. Princeton University, Department of Computer Science (1987)

  37. Ahuja, R.K., Mehlhorn, K., Orlin, J., Tarjan, R.E.: Faster algorithms for the shortest path problem. JACM 37, 213–223 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  38. Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28, 652–673 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Santos, J. L.: k-Shortest path algorithms (2007)

  40. Aljazzar, H., Leue, S.: K\(\ast \): a heuristic search algorithm for finding the k shortest paths. Artif. Intell. 175, 2129–2154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Guo, L.: Efficient approximation algorithms for computing k. J. Comb. Optim. 32, 144–158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18, 509–517 (1975)

    Article  MATH  Google Scholar 

  43. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3, 209–226 (1977)

    Article  MATH  Google Scholar 

  44. Panigrahy, R.: An improved algorithm finding nearest neighbor using kd-trees. LATIN 2008: Theoretical Informatics, pp. 387–398 (2008)

  45. Calculate distance, bearing and more between Latitude/Longitude points. http://www.movable-type.co.uk/scripts/latlong.html

  46. Tragoudas, S., Varol, Y. L.: Computing disjoint paths with length constraints. In: International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 375–389 (1996)

  47. Kuipers, F. A.: An overview of algorithms for network survivability. ISRN Communications and Networking, vol. 2012 (2012)

  48. Itai, A., Perl, Y., Shiloach, Y.: The complexity of finding maximum disjoint paths with length constraints. Networks 12, 277–286 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, C.L., Simchi-Levi, D., Thomas McCormick, S.: Finding disjoint paths with different path-costs: complexity and algorithms, Networks 22, 653–667 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  50. Erdos, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5, 17–60 (1960)

    MathSciNet  MATH  Google Scholar 

  51. Watts and Strogatz model. https://en.wikipedia.org/wiki/Watts_and_Strogatz_model

  52. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440 (1998)

    Article  MATH  Google Scholar 

  53. Verbrugge, S., Colle, D., Demeester, P., Huelsermann, R., Jaeger, M.: General availability model for multilayer transport networks. In: 5th International Workshop on Design of Reliable Communication Networks (DRCN 2005) (2005)

  54. CenturyLink. http://www.centurylink-business.com/demos/network-maps.html?server=wholesale#fiber

Download references

Acknowledgements

This work was supported by Ministry of Higher Education Malaysia (MOHE) and the administration of Universiti Teknologi Malaysia through Institute Grant Vote Number 02K85.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Waqar Ashraf.

Appendix

Appendix

figure g
figure h
figure i

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M.W., Idrus, S.M., Iqbal, F. et al. On spatially disjoint lightpaths in optical networks. Photon Netw Commun 36, 11–25 (2018). https://doi.org/10.1007/s11107-018-0764-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0764-x

Keywords

Navigation