Skip to main content
Log in

160 Gb/s photonic crystal semiconductor optical amplifier-based all-optical logic NAND gate

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The performance of an ultra-fast all-optical logic NOT-AND gate using photonic crystal semiconductor optical amplifiers (PCSOA)-based Mach–Zehnder interferometers is numerically analysed and investigated. The dependence of the quality factor (Q-factor) on the input signals’ and PCSOA operating parameters is examined, with the impact of amplified spontaneous emission included so as to obtain realistic results. The achieved Q-factor is 18 at 160 Gb/s, which is higher than when using conventional SOAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bogoni, A., Potì, L., Ghelfi, P., Scaffardi, M., Porzi, C., Ponzini, F., Meloni, G., Berrettini, G., Malacarne, A., Prati, G.: OTDM-based optical communications networks at 160 Gbit/s and beyond. Opt. Fiber Technol. 13, 1–12 (2007)

    Article  Google Scholar 

  2. Qin, C., Zhao, J., Yu, H., Zhang, J.: Gain recovery dynamics in semiconductor optical amplifiers with distributed feedback grating under assist light injection. Opt. Eng. 55, 076116 (2016)

    Article  Google Scholar 

  3. Kumar, Y., Shenoy, M.R.: Enhancement in the gain recovery of a semiconductor optical amplifier by device temperature control. Pramana J. Phys. 87, 1–6 (2016)

    Article  Google Scholar 

  4. Kumar, Y., Shenoy, M.R.: A novel scheme of optical injection for fast gain recovery in semiconductor optical amplifier. IEEE Photonics Technol. Lett. 26, 933–936 (2014)

    Article  Google Scholar 

  5. Li, C., Tian, X., Xiu, Z., Shang, Z., Xiao, G., Xiao, T., Yong, L.: Theoretical analysis of ultra-fast phase recovery in semiconductor optical amplifiers. Chin. Sci. Bull. 57, 1078–1082 (2012)

    Article  Google Scholar 

  6. Ginovart, F., Simon, J.C., Valiente, I.: Gain recovery dynamics in semiconductor optical amplifier. Opt. Commun. 199, 111–115 (2011)

    Article  Google Scholar 

  7. Giller, R., Manning, R.J., Talli, G., Webb, R.P., Adams, M.J.: Analysis of the dimensional dependence of semiconductor optical amplifier recovery speeds. Opt. Express 15, 1773–1782 (2007)

    Article  Google Scholar 

  8. Giller, R., Manning, R.J., Cotter, D.: Gain and phase recovery of optically excited semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 18, 1061–1063 (2006)

    Article  Google Scholar 

  9. Rendon-Salgado, I., Gutierrez-Castrejon, R.: 160 Gb/s all-optical AND gate using bulk SOA turbo-switched Mach-Zehnder interferometer. Opt. Commun. 399, 77–86 (2017)

    Article  Google Scholar 

  10. Marwaha, A.L.: Reconfiguration of optical logic gates at 160 Gb/s based on SOA-MZI. Comput. Electron. 15, 1473–1483 (2016)

    Article  Google Scholar 

  11. Marwaha, A.L.: Implementation of optical logic gates at 160 Gbps using nonlinear effect of single SOA. Opt. Laser Technol. 70, 112–118 (2015)

    Article  Google Scholar 

  12. Mizuta, E., Watanabe, H., Baba, T.: All semiconductor low-\(\Delta \) photonic crystal waveguide for semiconductor optical amplifier. Jpn. J. Appl. Phys. 45, 6116–6120 (2006)

    Article  Google Scholar 

  13. Taleb, H., Abedi, K.: Modeling and design of photonic crystal quantum-dot semiconductor optical amplifiers. IEEE Trans. Electron. Devices 61, 2419–2423 (2014)

    Article  Google Scholar 

  14. Zhang, Y., Zheng, W., Aiyi, Q., Qu, H., Peng, H., Xie, S., Chen, L.: Design of photonic crystal semiconductor optical amplifier with polarization independence. Lightwave Technol. 28, 3207–3211 (2010)

    Google Scholar 

  15. Taleb, H., Abedi, K.: Optical gain, phase, and refractive index dynamics in photonic crystal quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 50, 605–612 (2014)

    Article  Google Scholar 

  16. Taleb, H., Abedi, K.: Design of a novel low power all-optical NOR gate using photonic crystal quantum-dot semiconductor optical amplifiers. Opt. Lett. 39, 6237–6241 (2014)

    Article  Google Scholar 

  17. Kotb, A., Zoiros, K.E.: Performance analysis of all-optical XOR gate with photonic crystal semiconductor optical amplifier-assisted Mach-Zehnder interferometer at 160 Gb/s. Opt. Commun. 402, 511–517 (2017)

    Article  Google Scholar 

  18. Mano, M.M., Ciletti, M.D.: Digital Design, 4th edn. Prentice Hall, New Jersey (2006)

    Google Scholar 

  19. Jung, Y.J., Son, C.W., Jhon, Y.M., Lee, S., Park, N.: One-level simplification method for all-optical combinational logic circuits. IEEE Photonics Technol. Lett. 20, 800–802 (2008)

    Article  Google Scholar 

  20. Li, W., Ma, S., Hu, H., Dutta, N.K.: All-optical latches using quantum-dot semiconductor optical amplifier. Opt. Commun. 285, 5138–5143 (2012)

    Article  Google Scholar 

  21. Hamilton, S.A., Robinson, B.S.: 40-Gb/s all-optical packet synchronization and address comparison for OTDM networks. IEEE Photonics Technol. Lett. 14, 209–211 (2002)

    Article  Google Scholar 

  22. Villafranca, A., Cabezón, M., Izquierdo, D., Martínez, J.J., Garcés, I.: Programmable all-optical logic gates based on semiconductor optical amplifiers. In: Proceedings of the International Conference Transparent Optical Networks (ICTON), paper We.B5.6 (2011)

  23. Dutta, N.K., Wang, Q.: Semiconductor Optical Amplifiers, 2nd edn. World Scientific Publishing Company, Singapore (2013)

    Book  Google Scholar 

  24. Kim, J.Y., Kang, J.M., Kim, T.Y., Han, S.K.: All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment. Lightwave Technol. 24, 3392–3399 (2006)

    Article  Google Scholar 

  25. Saharia, A., Sharma, R.: An approach for realization of all-optical NAND gate using nonlinear effect in SOA. Int. J. Signal Proc. Imaging Eng. 1, 13–17 (2014)

    Google Scholar 

  26. Ye, X., Ye, P., Zhang, M.: All-optical NAND gate using integrated SOA-based Mach-Zehnder interferometer. Opt. Fiber Technol. 12, 312–316 (2006)

    Article  Google Scholar 

  27. Kotb, A., Ma, S., Chen, Z., Dutta, N.K., Said, G.: All-optical logic NAND based on two-photon absorption in semiconductor optical amplifiers. Opt. Commun. 283, 4707–4712 (2010)

    Article  Google Scholar 

  28. Kotb, A., Ma, S., Chen, Z., Dutta, N.K., Said, G.: All-optical logic NAND based on two-photon absorption. In: Proceedings of the SPIE Photon. Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications IV, 77810D (2010)

  29. Kotb, A., Ma, S., Chen, Z., Dutta, N.K., Said, G.: Effect of amplified spontaneous emission on semiconductor optical amplifier based all-optical logic. Opt. Commun. 284, 5798–5803 (2011)

    Article  Google Scholar 

  30. Son, C.W., Kim, S.H., Jhon, Y.M., Byun, Y.T., Lee, S., Woo, D.H., Kim, S.K., Yoon, T.H.: Realization of all-optical XOR, NOR, and NAND gates in a single format by using semiconductor optical amplifiers. Jpn. J. Appl. Phys. 46, 232–234 (2007)

    Article  Google Scholar 

  31. Kim, S.H., Kim, J.H., Choi, J., Woo, D.H.: All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electron. Lett. 2, 957–959 (2005)

    Google Scholar 

  32. Chattopadhyay, T.: All-optical programmable Boolean logic unit using semiconductor optical amplifiers on the Mach-Zehnder interferometer arms switch. IET Optoelectron. 5, 270–280 (2011)

    Article  Google Scholar 

  33. Cao, T., Ho, Y.L.D., Heard, P.J., Barry, L.P., Kelly, A.E., Cryan, M.J.: Fabrication and measurement of a photonic crystal waveguide integrated with a semiconductor optical amplifier. J. Opt. Soc. Am. B 26, 768–777 (2009)

    Article  Google Scholar 

  34. Kotb, A., Maeda, J.: NXOR based on semiconductor optical amplifiers with the effect of amplified spontaneous emission. Optoelectron. Lett. 8, 437–440 (2012)

    Article  Google Scholar 

  35. Kotb, A.: Simulation of all-optical logic NOR gate based on two-photon absorption with semiconductor optical amplifier-assisted Mach-Zehnder interferometer with the effect of amplified spontaneous emission. Korean Phys. Soc. 66, 1593–1598 (2015)

    Article  Google Scholar 

  36. Kotb, A.: Modeling of high-quality-factor XNOR gate using quantum-dot semiconductor optical amplifiers at 1 Tb/s. Braz. J. Phys. 45, 288–295 (2015)

    Article  Google Scholar 

  37. Ma, S., Sun, H., Chen, Z., Dutta, N.K.: High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers. Opt. Express 17, 18469–18477 (2009)

    Article  Google Scholar 

  38. Singh, P., Tripathi, D.K., Jaiswal, S., Dixit, H.K.: Design and analysis of all-optical AND, XOR and OR gates based on SOA-MZI configuration. Opt. Laser Technol. 66, 35–44 (2015)

    Article  Google Scholar 

  39. Singh, S., Kaur, R., Kaler, R.S.: Photonic processing for all-optical logic gates based on semiconductor optical amplifier. Opt. Eng. 53, 116102 (2014)

    Article  Google Scholar 

  40. Essiambre, R.J., Raybon, G., Mikkelsen, B.: Pseudo-linear transmission of high-speed TDM signals: 40 and 160 Gb/s. In: Kaminow, I.P., Li, T. (eds.) Optical Fiber Telecommunications IV-B: Systems and impairments. Academic Press, Cambridge (2002)

    Google Scholar 

  41. Weber, H.G., Nakazawa, M.: Ultrahigh-Speed Optical Transmission Technology. Springer, Berlin (2007)

    Book  Google Scholar 

  42. Ishikawa, H.: Ultrafast All-Optical Signal Processing Devices. Wiley, London (2008)

    Book  Google Scholar 

  43. Cvijetic, M., Djordjevic, I.B.: Advanced Optical Communication Systems and Networks. Artech House, Norwood (2013)

    Google Scholar 

  44. Zoiros, K.E., Vardakas, J., Houbavlis, T., Moyssidis, M.: Investigation of SOA-assisted Sagnac recirculating shift register switching characteristics. Optik 116, 527–541 (2005)

    Article  Google Scholar 

  45. Bonk, R., Vallaitis, T., Guetlein, J., Meuer, C., Schmeckebier, H., Bimberg, D., Koos, C., Freude, W., Leuthold, J.: The input power dynamic range of a semiconductor optical amplifier and its relevance for access network applications. IEEE Photonics 3, 1039–1053 (2011)

    Article  Google Scholar 

  46. Ueno, Y., Nakamura, S., Tajima, K.: Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40–160-GHz range for use in ultrahigh-speed all-optical signal processing. J. Opt. Soc. Am. B 19, 2573–2589 (2002)

    Article  Google Scholar 

  47. Schares, L., Schubert, C., Schmidt, C., Weber, H.G., Occhi, L., Guekos, L.: Phase dynamics of semiconductor optical amplifiers at 10–40 GHz. IEEE J. Quantum Electron. 39, 1394–1408 (2003)

    Article  Google Scholar 

  48. Kotb, A.: All-Optical Logic Gates Using Semiconductor Optical Amplifier. Lambert Academic Publishing, Saarbrucken (2012)

    Google Scholar 

  49. Melo, A.M., Petermann, K.: On the amplified spontaneous emission noise modeling of semiconductor optical amplifiers. Opt. Commun. 281, 4598–4605 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer Kotb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotb, A., Zoiros, K.E. & Guo, C. 160 Gb/s photonic crystal semiconductor optical amplifier-based all-optical logic NAND gate. Photon Netw Commun 36, 246–255 (2018). https://doi.org/10.1007/s11107-018-0776-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0776-6

Keywords

Navigation