Skip to main content
Log in

A cross-layer analysis of TCP/link adaptation technologies over free-space optical links with Markov error model

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive cross-layer framework on the performance of transmission control protocol (TCP) over a free-space optical (FSO) link, which employs automatic repeat request (ARQ) and adaptive modulation and coding (AMC) schemes. Not similar to conventional works in the literature of FSO, we conduct a Markov error model to accurately capture effects of burst errors caused by atmospheric turbulence on cross-layer operations. From the framework, we quantify the impacts of different parameters/settings of ARQ, AMC, and the FSO link on TCP throughput performance. We also discuss several optimization aspects for TCP performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Brien, D., Katz, M.: Optical wireless communications within fourth-generation wireless systems. IEEE/OSA J. Opt. Netw. 4(6), 312–322 (2005)

    Article  Google Scholar 

  2. Zhu, Z., Kahn, J.M.: Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 50(8), 1293–1300 (2002)

    Article  Google Scholar 

  3. Mai, V.V., Thang, T.C., Pham, A.T.: Cross-layer design and analysis for FSO links using automatic repeat request and adaptive modulation/coding schemes. In: Proceedings of the 2014 International Symposium on Communication Systems, Networks, and Digital Signal Processing (CSNDSP 2014), pp. 1176–1180. Manchester, United Kingdom (2014)

  4. Khalighi, M.A., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014)

    Article  Google Scholar 

  5. Mai, V.V., Pham, A.T.: Cross-layer design and analysis of adaptive-rate transmission and ARQ for free-space optical communications. IEEE Photonics J. 8(1), 1–15 (2016)

    Article  MathSciNet  Google Scholar 

  6. Le, L., Hossain, E., Le-Ngoc, T.: Interaction between radio link level truncated ARQ, and TCP in multi-rate wireless networks: a cross-layer performance analysis. IET Commun. 1(5), 821–830 (2007)

    Article  Google Scholar 

  7. Go, K.C., Kim, J.H., Choo, S.M.: TCP performance-aware HARQ with AMC scheme. In: Proceedings of the 2011 IEEE Vehicular Technology Conference (VTC 2011), San Francisco, United States (2011)

  8. Raffaelli, C., Zaffoni, P.: TCP performance in optical packet-switched networks. Photonic Netw. Commun. 11(3), 243–252 (2006)

    Article  Google Scholar 

  9. Lee, E.J., Chan, V.W.S.: Performance of the transport layer protocol for diversity communication over the clear turbulent atmospheric optical channel. In: Proceedings of the 2005 IEEE International Conference on Communications (IPCC 2005), Ireland, pp. 333–339 (2005)

  10. Kose, C., Halford, T.R.: Incremental redundancy hybrid ARQ protocol design for FSO links. In: Proceedings of the 2009 IEEE Military Communications Conference (IMCC 2009), Boston, United States, pp. 1–7 (2009)

  11. Mai, V.V., Thang, T.C., Pham, A.T.: Performance of TCP over free-space optical atmospheric turbulence channels. IEEE/OSA J. Opt. Commun. Netw. 5(11), 1168–1177 (2013)

    Article  Google Scholar 

  12. NEC Corporation. Research and development of free-space optical communication. 2012 ICT Innovation Forum, http://www.soumu.go.jp/maincontent/000179889.pdf (2012)

  13. Kazemi, H., Uysal, M., Touati, F.: Outage analysis of hybrid FSO/RF system based on finite-state Markov chain modeling. In: Proceedings of the 2014 International Workshop in Optical Wireless Communications (IWOW), Madeira Island, Portugal, pp. 11–15 (2014)

  14. Zhang, Q., Kassam, S.A.: Finite-state Markov model for Rayleigh fading channels. IEEE Trans. Commun. 47(11), 1688–1692 (1999)

    Article  Google Scholar 

  15. Chaskar, H.M., Lakshman, T.V., Madhow, U.: TCP over wireless with link level error control: analysis and design methodology. IEEE/ACM Trans. Netw. 7(5), 605–615 (1999)

    Article  Google Scholar 

  16. Zorzi, R., Chockalingam, A., Rao, R.R.: Throughput analysis of TCP on channels with memory. IEEE J. Sel. Areas Commun. 18(7), 1289–1300 (2000)

    Article  Google Scholar 

  17. Nguyen, C.T., Mai, V.V., Pham, A.T.: TCP over free-space optical links with ARQ and AMC: a cross-layer performance analysis. In: Proceedings of 2016 the International Conference on Advanced Technologies for Communications (ATC 2016), Hanoi, Vietnam, pp. 1039–2162 (2016)

  18. Jasem, H.N., Zukarnain, Z.A., Othman, M., Subramaniam, S.: The TCP-based new AIMD congestion control algorithm. J. Comput. Sci. Netw. Secur. 8(10), 331–338 (2008)

    Google Scholar 

  19. Mai, V.V., Pham, A.T.: Performance analysis of cooperative-ARQ schemes in free-space optical communications. IEEE Trans. Commun. 97(8), 1614–1622 (2014)

    Article  Google Scholar 

  20. Uysal, M., Li, J., Yu, M.: Error rate performance analysis of coded free-space optical links over gamma–gamma atmospheric turbulence channels. IEEE Trans. Commun. 5(6), 1229–1233 (2006)

    Google Scholar 

  21. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic Press, New York (2000)

    MATH  Google Scholar 

  22. Padhye, J., Firoiu, V., Towsley, D.F., Kurose, J.F.: Modeling TCP Reno performance: a simple model and its emperical validation. IEEE/ACM Trans. Netw. 8(2), 133–145 (2000)

    Article  Google Scholar 

  23. Bonde, D., Bonde, J.: HIPERLAN/2 and 802.11a: a comparative study. In: Proceedings of the 2006 IEEE World Scientific and Engineering Academy and Society (WSEAS 2006), Canary Islands, Spain, pp. 7–11 (2006)

  24. Indumathi, G., Murugesan, K.: A cross-layer design to improve spectral efficiency in wireless networks. Int. J. Future Gener. Commun. Netw. 4(1), 1–12 (2011)

    Google Scholar 

  25. Dai, C.Q., Rao, Y., Jiang, L., Chen, Q.B., Huang, Q.: Cross-layer design of combining HARQ with adaptive modulation and coding for Nakagami-m fading channels. J. Commun. 7(6), 458–463 (2012)

    Article  Google Scholar 

  26. Sadeghi, P., Kennedy, R.A., Rapajic, P.B., Shams, R.: Finite-state Markov modeling of fading channels. IEEE Sig. Process. Mag. 25(5), 57–80 (2008)

    Article  Google Scholar 

  27. Peppas, K., Datsikas, C.: Average symbol error probability of general-order rectangular quadrature amplitude modulation of optical wireless communication systems over atmospheric turbulence channels. IEEE/OSA J. Opt. Commun. Netw. 2(2), 102110 (2010)

    Article  Google Scholar 

  28. Yun, J., Kavehrad, M.: Markov error structure for throughput analysis of adapapive modulation systems combined with ARQ over correlated fading channels. IEEE Trans. Veh. Technol. 54(1), 235–245 (2005)

    Article  Google Scholar 

  29. Mai, V.V., Tran, N.A., Thang, T.C., Pham, A.T.: Performance analysis of TCP over visible light communication networks with ARQ protocol. Wil. Trans. Emerg. Telecom. Technol. 25(6), 600–608 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuyen T. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, C.T., Le, H.D. & Mai, V.V. A cross-layer analysis of TCP/link adaptation technologies over free-space optical links with Markov error model. Photon Netw Commun 36, 279–288 (2018). https://doi.org/10.1007/s11107-018-0798-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0798-0

Keywords

Navigation