Skip to main content
Log in

Microring resonator-based photonic system for terahertz signal generation

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

We propose a photonic system based on add–drop microring resonator and mode-locked laser for terahertz (THz) signal generation. A mode-locked laser acts as an input source to the microring resonator. The transfer characteristics of the microring resonator generate Lorentzian shaped pulses at the output ports of the microring resonator. These series of pulses obtained are then investigated in two approaches; in the first approach, the output of the microring resonator is given to a photodetector which generates 33 THz pulses separated by a spacing of 1 THz with a full width at half maximum (FWHM) of 0.15 THz. In the second approach, the output of the microring resonator is given to an optical filter to extract a particular frequency component. In this case, a single THz carrier with a FWHM of 0.2618 THz is obtained. The THz frequency components generated by the proposed photonic system can act as carriers for communication between the indoor user and the base station of a pico/femto cell in a 5G environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Seeds, A., Lee, C.H., Funk, E., Nagamura, M.: Guest editorial: microwave photonics. J. Lightwave Technol. 21(12), 2959–2960 (2003)

    Article  Google Scholar 

  2. Seeds, A.J., Williams, K.J.: Microwave photonics. J. Lightwave Technol. 24(12), 4628–4641 (2006)

    Article  Google Scholar 

  3. Capmany, J., Novak, D.: Microwave photonics combines two worlds. Nat. Photonics 1(6), 319–330 (2007)

    Article  Google Scholar 

  4. Ridgway, R.W., Dohrman, C.L., Conway, J.A.: Microwave photonics programs at DARPA. J. Lightwave Technol. 32(20), 3428–3439 (2014)

    Article  Google Scholar 

  5. Urick, V.J., Williams, K.J., McKinney, J.D.: Fundamentals of Microwave Photonics. Wiley, New York (2015)

    Book  Google Scholar 

  6. Lee, C.H.: Microwave Photonics. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  7. Xu, K., Wang, R., Dai, Y., Yin, F., Li, J., Ji, Y., Lin, J.: Microwave photonics: radio-over-fiber links, systems, and applications. Photonics Res. 2(4), B54–B63 (2014)

    Article  Google Scholar 

  8. Capmany, J., Muñoz, P.: Integrated microwave photonics for radio access networks. J. Lightwave Technol. 32(16), 2849–2861 (2014)

    Article  Google Scholar 

  9. Fiorani, M., Skubic, B., Mårtensson, J., Valcarenghi, L., Castoldi, P., Wosinska, L., Monti, P.: On the design of 5G transport networks. Photonic Netw. Commun. 30(3), 403–415 (2015)

    Article  Google Scholar 

  10. Sotom, M., Bénazet, B., Le Kernec, A., Maignan, M.: Microwave photonic technologies for flexible satellite telecom payloads. In: Proceedings of the 35th European Conference on Optical Communication, Vienna, pp. 1–4 (2009)

  11. Raza, A., Ghafoor, S., Butt, M.F.U.: MIMO-enabled integrated MGDM–WDM distributed antenna system architecture based on plastic optical fibers for millimeter-wave communication. Photonic Netw. Commun. 35(2), 265–273 (2018)

    Article  Google Scholar 

  12. Capmany, J., Ortega, B., Pastor, D.: A tutorial on microwave photonic filters. J. Lightwave Technol. 24(1), 201–229 (2006)

    Article  Google Scholar 

  13. Nagatsuma, Tadao, Nishii, Hiroki, Ikeo, Toshiyuki: Terahertz imaging based on optical coherence tomography. Photonic Res. 2(4), B64–B69 (2014)

    Article  Google Scholar 

  14. Manka, M.E.: Microwave photonics for electronic warfare applications. In Proceedings of IEEE International Topical Meeting on Microwave Photonics (MWP), Australia, pp. 275–278 (2008)

  15. Waterhouse, R., Novack, D.: Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 16(8), 84–92 (2015)

    Article  Google Scholar 

  16. Tsokos, C., Groumas, P., Katopodis, V., Avramopoulos, H., Kouloumentas, C.: Enabling photonic integration technology for microwave photonics in 5G systems. In: Proceedings of IEEE 19th International Conference on Transparent Optical Networks (ICTON), Catalonia, pp. 1–4 (2017)

  17. Nagatsuma, T., Ducournau, G., Renaud, C.C.: Advances in terahertz communications accelerated by photonics. Nat. Photonics 10(6), 371–379 (2016)

    Article  Google Scholar 

  18. Akyildiz, I.F., Jornet, J.M., Han, C.: Terahertz band: next frontier for wireless communications. Phys. Commun. 12, 16–32 (2014)

    Article  Google Scholar 

  19. Liu, L.: Compressed sensing on terahertz imaging. Doctoral dissertation, University of Liverpool (2017)

  20. Chen, Y., Ding, Y., Zhu, Z., Chi, H., Zheng, S., Zhang, X., Jin, X., Galili, M., Yu, X.: Photonic compressive sensing with a micro-ring-resonator-based microwave photonic filter. Opt. Commun. 373, 65–69 (2016)

    Article  Google Scholar 

  21. Nagatsuma, T., et al.: Terahertz wireless communications based on photonics technologies. Opt. Express 21(20), 23736–23747 (2013)

    Article  Google Scholar 

  22. Song, H.J., Oh, K.H., Shimizu, N., Kukutsu, N., Kado, Y.: Generation of frequency-modulated sub-terahertz signal using microwave photonic technique. Opt. Express 18(15), 15936–15941 (2010)

    Article  Google Scholar 

  23. Sun, D., Dong, Y., Yi, L., Wang, S., Shi, H., Xia, Z., Xie, W., Hu, W.: Photonic generation of millimeter and terahertz waves with high phase stability. Opt. Lett. 39(6), 1493–1496 (2014)

    Article  Google Scholar 

  24. Carpintero, G., Hisatake, S., de Felipe, D., Guzman, R., Nagatsuma, T., Keil, N., Göbel, T.: Photonics-based millimeter and terahertz wave generation using a hybrid integrated dual DBR polymer laser. In: Microwave Symposium (IMS), 2016 IEEE MTT-S International 2016 May 22, pp. 1–3. IEEE

  25. Soltanian, M.R., Amiri, I.S., Alavi, S.E., Ahmad, H.: Dual-wavelength erbium-doped fiber laser to generate terahertz radiation using photonic crystal fiber. J. Lightwave Technol. 33(24), 5038–5046 (2015)

    Article  Google Scholar 

  26. Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Kumar Selvaraja, S., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photonics Rev. 6(1), 47–73 (2012)

    Article  Google Scholar 

  27. Feng, S., Lei, T., Chen, H., Cai, H., Luo, X., Poon, A.W.: Silicon photonics: from a microresonator perspective. Laser Photonics Rev. 6(2), 145–177 (2012)

    Article  Google Scholar 

  28. Ehteshami, N., Zhang, W., Yao, J.: Optically tunable single passband RF tilter based on phase-modulation to intensity-modulation conversion in a silicon-on-insulator microring resonator. In: Proceedings of the 2015 International Topical Meeting on RFs (MWP), Paphos, Cyprus, 26–29 October 2015, pp. 1–4

  29. Chew, S.X., Yi, X., Yang, W., Wu, C., Li, L., Nguyen, L., Minasian, R.: Optoelectronic oscillator based sensor using an on-chip sensing probe. IEEE Photonics J. 9, 5500809 (2017)

    Article  Google Scholar 

  30. Ehteshami, N., Zhang, W., Yao, J.: Optically tunable full 360° microwave photonic phase shifter using three cascaded silicon-on-insulator microring resonators. Opt. Commun. 373, 53–58 (2016)

    Article  Google Scholar 

  31. Amiri, I.S., Ahmad, H., Ghasemi, M., Ismail, M.F., Aidit, S.N., Soltanian, M.R., Nafarizal, N.: Silicon-based microring resonators for multi-solitons generation for THz communication. Opt. Quant. Electron. 48(8), 415 (2016)

    Article  Google Scholar 

  32. Luangxaysana, Khanthanou, Mitatha, Somsak, Yoshida, Masahiro, Komine, Noriyuki, Yupapin, Preecha P.: High-capacity terahertz carrier generation using a modified add-drop filter for radio frequency identification. Opt. Eng. 51(8), 085006 (2012)

    Article  Google Scholar 

  33. Amiri, I.S., Alizadeh, F., Ariannejad, M.M., Amini, R., Yupapin, P.: Computation of ion exchange buried microring resonator waveguide for THz communication applications. Results Phys. 10, 287–290 (2018)

    Article  Google Scholar 

  34. Sinha, R., Karabiyik, M., Al-Amin, C., Vabbina, P.K., Güney, D.Ö., Pala, N.: Tunable room temperature THz sources based on nonlinear mixing in a hybrid optical and THz micro-ring resonator. Sci. Rep. 5, 9422 (2015)

    Article  Google Scholar 

  35. Furusawa, K., Sekine, N., Kasamatsu, A., Uzawa, Y.: Microring resonator based frequency comb sources for compact continuous-wave THz generators. In: Proceedings of IEEE 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancum, pp. 1–2 (2017)

  36. Lo, M.C., Guzmán, R., Gordón, C., Carpintero, G.: Mode-locked laser with pulse interleavers in a monolithic photonic integrated circuit for millimeter wave and terahertz carrier generation. Opt. Lett. 42(8), 1532–1535 (2017)

    Article  Google Scholar 

  37. Huff, L.: Optics to enable 5G Mobile Networks, Blog of 2018 Optical Fiber Communication Conference, https://www.ofcconference.org/en-us/home/about/ofc-blog/2018/march-2018/optics-to-enable-5g-mobile-networks/

  38. Liu, Cheng, Wang, Jing, Cheng, Lin, Zhu, Ming, Chang, Gee-Kung: Key microwave-photonics technologies for next-generation cloud-based radio access networks. J. Lightwave Technol. 32(20), 3452–3460 (2014)

    Article  Google Scholar 

  39. Chandrasekhar, V., Andrews, J.G., Gatherer, A.: Femtocell networks: a survey. IEEE Commun. Mag. 46(9), 1–23 (2008)

    Article  Google Scholar 

  40. Niu, Y., Li, Y., Jin, D., Su, L., Vasilakos, A.V.: A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wireless Netw. 21(8), 2657–2676 (2015)

    Article  Google Scholar 

  41. Rodriguez, J.: Fundamentals of 5G Mobile Networks. Wiley, London (2015)

    Book  Google Scholar 

  42. Shams, Haymen, Seeds, Alwyn: Photonics, fiber and THz wireless communication. Opt. Photonics News 28(3), 24–31 (2017)

    Article  Google Scholar 

  43. Smith, P.W.: Mode-locking of lasers. Proc. IEEE 58(9), 1342–1357 (1970)

    Article  Google Scholar 

  44. Menzel, R.: Photonics, Linear and Nonlinear Interactions of Laser Light and Matter. Springer, New Delhi (2004)

    Google Scholar 

  45. Rabus, D.G.: Integrated Ring Resonators: The Compendium. Springer, Heidelberg (2007)

    Google Scholar 

  46. Chen, Y.F., Chang, M.T., Zhuang, W.Z., Su, K.W., Huang, K.F., Liang, H.C.: Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity. Laser Photonics Rev. 9(1), 91–97 (2015)

    Article  Google Scholar 

  47. Obraztsov, P.A., Okhrimchuk, A.G., Rybin, M.G., Obraztsova, E.D., Garnov, S.V.: Multi-gigahertz repetition rate ultrafast waveguide lasers mode-locked with graphene saturable absorbers. Laser Phys. 26(8), 084008 (2016)

    Article  Google Scholar 

  48. Hou, Lianping, Haji, Mohsin, Marsh, John H.: Mode-locking and frequency mixing at THz pulse repetition rates in a sampled-grating DBR mode-locked laser. Opt. Exp. 22(18), 21690–21700 (2014)

    Article  Google Scholar 

  49. Niigaki, R., Kida, Y., Imasaka, T.: Mode-locked laser with a repetition rate of 17.6 THz. Appl. Opt. 56(27), 7636–7641 (2017)

    Article  Google Scholar 

  50. Vorckel, A., Monster, M., Henschel, W., Bolivar, P.H., Kurz, H.: Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers. IEEE Photonics Technol. Lett. 15(7), 921–923 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Ministry of Electronics and Information Technology (MeitY), Government of India, for the Visvesvaraya Ph.D. fellowship. They also acknowledge RSoft for the tool support. They are thankful to SRM Institute of Science and Technology for the infrastructural and computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohan Katti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katti, R., Prince, S. Microring resonator-based photonic system for terahertz signal generation. Photon Netw Commun 38, 75–88 (2019). https://doi.org/10.1007/s11107-018-0811-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0811-7

Keywords

Navigation