Skip to main content

Advertisement

Log in

Optimal control scheme for pneumatic soft actuator under comparison of proportional and PWM-solenoid valves

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Pneumatic soft actuator is a crucial component of soft robot. This paper proposes several pneumatic control schemes implemented with proportional and PWM-solenoid valves to achieve optimal control for pneumatic soft actuators adapted to different soft robots, such as soft gripper and soft humanoid hand. The schemes include: proportional valve; 3/2-way PWM-solenoid valve; 2/2-way PWM-solenoid valve. The control framework of these schemes contains human–machine interface in upper computer and control algorithm in lower computer. Sinusoidal and multi-step signals are served as reference input to draw a comparison of pressure tracking precision, steady-state accuracy and responsibility of these proposed schemes. The experimental results show that the scheme of proportional valve is more excellent than those of the PWM-solenoid valves, and the scheme of 3/2-way is superior to that of 2/2-way with regard to PWM-solenoid valve. Considering the cost, the scheme of 3/2-way PWM-solenoid valve is the most suitable choice for the system with multi-channel soft actuators. Therefore, the research achievement of this paper is providing a valuable suggestion on balancing the performance and cost for different soft robotic system applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hao, Y., Gong, Z., Xie, Z., Guan, S., Yang, X., Ren, Z., Wang, T., Wen, L.: Universal soft pneumatic robotic gripper with variable effective length. In: 35th Chinese Control Conference (CCC), TCCT, Chengdu, People’s Republic of China, pp. 6109–6114 (2016)

  2. Tian, M., Xiao, Y., Wang, X., Chen, J., Zhao, W.: Design and experimental research of pneumatic soft humanoid robot hand. In: Kim, J.H., Karray, F., Jo, J., Sincak, P., Myung, H. (eds.) Robot Intelligence Technology and Applications 4. Advances in Intelligent Systems and Computing, vol. 447, pp. 469–478. Springer, Cham (2017)

    Google Scholar 

  3. Deimel, R., Brock, O.: A novel type of compliant and under actuated robotic hand for dexterous grasping. Int. J. Robot. Res. 35, 161–185 (2016)

    Article  Google Scholar 

  4. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521, 467–475 (2015)

    Article  Google Scholar 

  5. Wehner, M., Truby, R.L., Fitzgerald, D.J., Mosadegh, B., Whitesides, G.M., Lewis, J.A., Wood, R.J.: An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016)

    Article  Google Scholar 

  6. Payne, C.J., Wamala, I., Abah, C., Thalhofer, T., Saeed, M., Bautista-Salinas, D., Horvath, M.A., Vasilyev, N.V., Roche, E.T., Pigula, F.A., Walsh, C.J.: An implantable extracardiac soft robotic device for the failing heart: mechanical coupling and synchronization. Soft Robot. 4, 241–250 (2017)

    Article  Google Scholar 

  7. Gul, J.Z., Yang, Y.J., Young Su, K., Choi, K.H.: Omni directional multimaterial soft cylindrical actuator and its application as a steerable catheter. Soft Robot. 4, 224–240 (2017)

    Article  Google Scholar 

  8. Al-Fahaam, H., Davis, S., Nefti-Meziani, S.: The design and mathematical modelling of novel extensor bending pneumatic artificial muscles (EBPAMs) for soft exoskeletons. Robot. Auton. Syst. 99, 63–74 (2018)

    Article  Google Scholar 

  9. Dinh, B.K., Xiloyannis, M., Cappello, L., Antuvan, C.W., Yen, S., Masia, L.: Adaptive backlash compensation in upper limb soft wearable exoskeletons. Robot. Auton. Syst. 92, 173 (2017)

    Article  Google Scholar 

  10. Hao, Y., Gong, Z., Xie, Z., Guan, S., Yang, X., Ren, Z., Wang, T., Wen, L.: Universal soft pneumatic robotic gripper with variable effective length. In: Control Conference, TCCT, pp. 6109–6114 (2016)

  11. Bishop-Moser, J., Krishnan, G., Kota, S.: Force and moment generation of fiber-reinforced pneumatic soft actuators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4460–4465 (2013)

  12. Gerboni, G., Diodato, A., Ciuti, G., Cianchetti, M., Menciassi, A.: Feedback control of soft robot actuators via commercial flex bend sensors. IEEE/ASME Trans. Mechatron. 22, 1881–1888 (2017)

    Article  Google Scholar 

  13. Wang, W., Ahn, S.H.: Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping. Soft Robot. 4, 379–389 (2017)

    Article  Google Scholar 

  14. Rodrigue, H., Wang, W., Han, M.W., Kim, T., Ahn, S.H.: An overview of shape memory alloy-coupled actuators and robots. Soft Robot. 4, 3 (2017)

    Article  Google Scholar 

  15. Zhao, H., Jalving, J., Huang, R., Knepper, R., Ruina, A., Shepherd, R.: A helping hand: soft orthosis with integrated optical strain sensors and EMG control. IEEE Robot. Autom. Mag. 23, 55–64 (2016)

    Article  Google Scholar 

  16. Jiang, H., Liu, X., Chen, X., Wang, Z., Jin, Y., Chen, X.: Design and simulation analysis of a soft manipulator based on honeycomb pneumatic networks. In: IEEE International Conference on Robotics and Biomimetics, pp. 350–356. IEEE (2016)

  17. Bishop-Moser, J., Kota, S.: Design and modeling of generalized fiber-reinforced pneumatic soft actuators. IEEE Trans. Robot. 31, 536–545 (2015)

    Article  Google Scholar 

  18. Skorina, E.H., Luo, M., Ozel, S., Chen, F., Tao, W., Onal, C.D.: Feedforward augmented sliding mode motion control of antagonistic soft pneumatic actuators. In: IEEE International Conference on Robotics and Automation, pp. 2544–2549. IEEE (2015)

  19. Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R.F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C.J., Whitesides, G.M.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24, 2163–2170 (2014)

    Article  Google Scholar 

  20. Tavakoli, M., Lopes, P., Lourenco, J., Rocha, R.P., Giliberto, L., de Almeida, A.T., Majidi, C.: Autonomous selection of closing posture of a robotic hand through embodied soft matter capacitive sensors. IEEE Sens. J. 17, 5669–5677 (2017)

    Article  Google Scholar 

  21. Hao, Y., Wang, T., Ren, Z., Gong, Z., Wang, H., Yang, X., Guan, S., Wen, L.: Modeling and experiments of a soft robotic gripper in amphibious environments. Int. J. Adv. Robot. Syst. 14, 1729881417707148 (2017)

    Article  Google Scholar 

  22. Laski, P.A.: Proportional valve with a piezoelectric actuator. Eur. Phys. J. Web Conf. 143, 02064 (2017)

    Article  Google Scholar 

  23. Avram, M., Bucsan, C., Duminica, D., Bogatu, L., Spanu, A.R.: Pneumatic proportional valve with piezoelectric actuator, chap. 27. In: DAAAM international Scientific Book, pp. 331-346 (2011)

  24. Gastaldi, L., Pastorelli, S., Sorli, M.: Static and dynamic experimental investigation of a pneumatic open loop proportional valve. Exp. Tech. 40, 1–9 (2016)

    Article  Google Scholar 

  25. Badr, M.F., Abdullah, Y., Jaliel, A.K.: Position control of the pneumatic actuator employing ON/OFF solenoids valve. Int. J. Mech. Mechatron. Eng. 17, 29–37 (2017)

    Google Scholar 

  26. Laib, K., Megnous, A., Pham, M., Linshi, X.: State averaged model based design of nonlinear observer for the on/off solenoid valve pneumatic actuators. Research Report: Ecole Centrale De Lyon (2016)

  27. Rahman, R.A., Sepehri, N.: Experimental comparison between proportional and PWM-solenoid valves controlled servopneumatic positioning systems. Trans. Can. Soc. Mech. Eng. 41, 65–83 (2017)

    Article  Google Scholar 

  28. Mohan, B., Saravanakumar, D.: Comparison of servo positioning performance of pneumatic cylinders using proportional valve method and PWM control method. Appl. Mech. Mater. 541–542, 1233–1237 (2014)

    Article  Google Scholar 

  29. Meng, F., Zhang, H., Cao, D., Chen, H.: System modeling, coupling analysis, and experimental validation of a proportional pressure valve with pulsewidth modulation control. IEEE/ASME Trans. Mechatron. 21, 1742–1753 (2016)

    Article  Google Scholar 

  30. Shiee, M., Sharifi, A., Fathi, M., Najafi, F.: An experimental comparison of PWM schemes to improve positioning of servo pneumatic systems. Int. J. Adv. Manuf. Technol. 82, 1765–1779 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the supports provided by the National Science Foundation of China under Grant No. 61803267, China Postdoctoral Science Foundation funded project under Grant No. 2017M622757, the Beijing Science and Technology Program under Grant No. Z171100000817007, the National Science Foundation of China under Grant Nos. 61503212 and 61572328. Moreover, the authors are grateful for the support of Science and Technology Commissioned Project of Shenzhen University (the research of pneumatic network type tactile perception soft bionic hand).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiming Huang or Fuchun Sun.

Appendix

Appendix

See Tables 5, 6 and 7.

Table 5 The pressure calibration data of three kinds of valves
Table 6 The related parameters of control and mass of object for soft gripper as grasping different fruits: orange, guava, avocado
Table 7 The related duty ratio of PWM and gas pressure for soft humanoid hand showing different gestures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Lin, J., Wu, L. et al. Optimal control scheme for pneumatic soft actuator under comparison of proportional and PWM-solenoid valves. Photon Netw Commun 37, 153–163 (2019). https://doi.org/10.1007/s11107-018-0815-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0815-3

Keywords

Navigation