Skip to main content
Log in

Radiation pattern design of photonic crystal LED optimized by using multi-objective grey wolf optimizer

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This paper proposes an effective method for shaping the radiation pattern intensity of photonic crystal (PhC) light-emitting diode (LED). In this method, the process of shaping the radiation pattern intensity is first formulated as a multi-objective problem. A multi-objective optimization, called multi-objective grey wolf optimizer, is then utilized to find a set of optimal designs. The proposed shaping method aims to focus the intensity of light in a narrow-angle range and provide uniform radiated light in this range. The proposed method is also described and applied to a case study. The results show that the method proposed is beneficial and could be utilized to design any kind of PhC LEDs. As the lack of analytical method prevents researchers from finding optimal designs, this method is a shortcut to systematically shape the radiated intensity of PhC LED light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Shields, P.A., Charlton, M.D.B., Lee, T., Zoorob, M.E., Allsopp, D.W.E., Wang, W.N.: Enhanced light extraction by photonic quasi-crystals in GaN blue LEDs. IEEE J. Sel. Top. Quantum Electron. 15, 1269–1274 (2009)

    Article  Google Scholar 

  2. Sun, T., Zhao, W., Wu, X., Liu, S., Ma, Z., Peng, J., He, J., Xu, H.: Porous light-emitting diodes with patterned sapphire substrates realized by high-voltage self-growth and soft UV nanoimprint processes. J Lightwave Technol 32, 326–332 (2014)

    Article  Google Scholar 

  3. Wiesmann, C., Bergenek, K., Linder, N., Schwarz, U.T.: Analysis of the emission characteristics of photonic crystal LEDs. In: Proceedings of SPIE, Photonic Crystal Materials and Devices VIII, vol. 69890L, p. 69890L–9 (2008)

  4. Mirjalili, S.M., Mirjalili, S., Mirjalili, S.Z.: How to design photonic crystal LEDs with artificial intelligence techniques. Electron. Lett. 51, 1437–1439 (2015). https://doi.org/10.1049/el.2015.1679

    Article  Google Scholar 

  5. Benisty, H., Stanley, R., Mayer, M.: Method of source terms for dipole emission modification in modes of arbitrary planar structures. JOSA 15, 1192–1201 (1998)

    Article  Google Scholar 

  6. Wiesmann, C.: Nano-structured LEDs—light extraction mechanisms and applications. http://epub.uni-regensburg.de/14117/ (2010). Accessed 2 July 2010

  7. Mirjalili, S., Saremi, S., Mirjalili, S.M., dos Coelho, L.S.: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl. 47, 106–119 (2016). https://doi.org/10.1016/j.eswa.2015.10.039

    Article  Google Scholar 

  8. Coello, C.A.C., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC’02, pp. 1051–1056. IEEE (2002)

  9. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International Conference on Parallel Problem Solving From Nature, pp. 849–858. Springer (2000)

  10. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary algorithms for solving multi-objective problems. Springer, New York (2007)

    MATH  Google Scholar 

  11. Mirjalili, S.M., Mirjalili, S.Z.: Single-objective optimization framework for designing photonic crystal filters. Neural Comput. Appl. 28, 1463–1469 (2017). https://doi.org/10.1007/s00521-015-2147-x

    Article  Google Scholar 

  12. Mirjalili, S.M., Merikhi, B., Mirjalili, S.Z., Zoghi, M., Mirjalili, S.: Multi-objective versus single-objective optimization frameworks for designing photonic crystal filters. Appl. Opt. 56, 9444–9451 (2017). https://doi.org/10.1364/AO.56.009444

    Article  Google Scholar 

  13. Mirjalili, S.Z., Mirjalili, S.M., Saremi, S., Mirjalili, S.: Whale optimization algorithm: theory, literature review, and application in designing photonic crystal filters. In: Mirjalili, S., Song Dong, J., Lewis, A. (eds.) Nature-inspired optimizers: theories, literature reviews and applications, pp. 219–238. Springer International Publishing, Cham (2020)

    Chapter  Google Scholar 

  14. Safdari, M.J., Mirjalili, S.M., Bianucci, P., Zhang, X.: Multi-objective optimization framework for designing photonic crystal sensors. Appl. Opt. 57, 1950–1957 (2018). https://doi.org/10.1364/AO.57.001950

    Article  Google Scholar 

  15. Rashidi, K., Mirjalili, S.M., Taleb, H., Fathi, D.: Optimal design of large mode area photonic crystal fibers using multi-objective gray wolf optimization technique. J. Lightwave Technol. 36, 5626–5632 (2018). https://doi.org/10.1109/JLT.2018.2877925

    Article  Google Scholar 

  16. Dharanipathy, U.P., Minkov, M., Tonin, M., Savona, V., Houdré, R.: High-Q silicon photonic crystal cavity for enhanced optical nonlinearities. Appl. Phys. Lett. 105, 101101 (2014). https://doi.org/10.1063/1.4894441

    Article  Google Scholar 

  17. Triviño, N.V., Minkov, M., Urbinati, G., Galli, M., Carlin, J.-F., Butté, R., Savona, V., Grandjean, N.: Gallium nitride L3 photonic crystal cavities with an average quality factor of 16 900 in the near infrared. Appl. Phys. Lett. 105, 231119 (2014). https://doi.org/10.1063/1.4903861

    Article  Google Scholar 

  18. Minkov, M., Savona, V.: Automated optimization of photonic crystal slab cavities. Sci. Rep. 4, 5124 (2014). https://doi.org/10.1038/srep05124

    Article  Google Scholar 

  19. Mohamed, M.S., Simbula, A., Carlin, J.-F., Minkov, M., Gerace, D., Savona, V., Grandjean, N., Galli, M., Houdré, R.: Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon. APL Photonics. 2, 031301 (2017). https://doi.org/10.1063/1.4974311

    Article  Google Scholar 

  20. Minkov, M., Savona, V., Gerace, D.: Photonic crystal slab cavity simultaneously optimized for ultra-high Q/v and vertical radiation coupling. Appl. Phys. Lett. 111, 131104 (2017). https://doi.org/10.1063/1.4991416

    Article  Google Scholar 

  21. Lai, Y., Pirotta, S., Urbinati, G., Gerace, D., Minkov, M., Savona, V., Badolato, A., Galli, M.: Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million. Appl. Phys. Lett. 104, 241101 (2014). https://doi.org/10.1063/1.4882860

    Article  Google Scholar 

  22. Minkov, M., Savona, V.: A compact, integrated silicon device for the generation of spectrally filtered, pair-correlated photons. J. Opt. 18, 54012 (2016). https://doi.org/10.1088/2040-8978/18/5/054012

    Article  Google Scholar 

  23. Triviño, N.V., Minkov, M., Urbinati, G., Galli, M., Carlin, J., Savona, V., Grandjean, N.: GaN L3 photonic crystal cavities with an average quality factor in excess of 16000 in the near infrared. In: 2015 Conference on Lasers Electro-Optics, vol. 1, pp. 5–6 (2015). doi:https://doi.org/10.1364/cleo_qels.2015.ff1c.5

  24. Jiang, L., Wu, H., Jia, W., Li, X.: Optimization of low-loss and wide-band sharp photonic crystal waveguide bends using the genetic algorithm. Opt. Int. J. Light Electron Opt. 124, 1721–1725 (2013). https://doi.org/10.1016/j.ijleo.2012.06.005

    Article  Google Scholar 

  25. Mirjalili, S.M., Mirjalili, S.Z., Saremi, S., Mirjalili, S.: Sine cosine algorithm: theory, literature review, and application in designing bend photonic crystal waveguides. In: Mirjalili, S., Song Dong, J., Lewis, A. (eds.) Nature-inspired optimizers: theories, literature reviews and applications, pp. 201–217. Springer International Publishing, Cham (2020)

    Chapter  Google Scholar 

  26. Djavid, M., Mirtaheri, S.A., Abrishamian, M.S.: Photonic crystal notch-filter design using particle swarm optimization theory and finite-difference time-domain analysis. J. Opt. Soc. Am. B. 26, 849–853 (2009). https://doi.org/10.1364/JOSAB.26.000849

    Article  Google Scholar 

  27. Mirjalili, S.M., Mirjalili, S.Z.: Asymmetric oval-shaped-hole photonic crystal waveguide design by artificial intelligence optimizers. IEEE J. Sel. Top. Quantum Electron. 22, 4900407 (2016). https://doi.org/10.1109/JSTQE.2015.2469760

    Article  Google Scholar 

  28. Mirjalili, S.M., Mirjalili, S.Z.: Full optimizer for designing photonic crystal waveguides: IMoMIR framework. IEEE Photonics Technol. Lett. 27, 1776–1779 (2015). https://doi.org/10.1109/LPT.2015.2443073

    Article  Google Scholar 

  29. Mirjalili, S.M.: SoMIR framework for designing high-NDBP photonic crystal waveguides. Appl. Opt. 53, 3945–3953 (2014). https://doi.org/10.1364/AO.53.003945

    Article  Google Scholar 

  30. Mirjalili, S.M., Mirjalili, S., Lewis, A.: A novel multi-objective optimization framework for designing photonic crystal waveguides. Photonics Technol. Lett. IEEE. 26, 146–149 (2014). https://doi.org/10.1109/LPT.2013.2290318

    Article  Google Scholar 

  31. Saremi, S., Mirjalili, S.M., Mirjalili, S.: Unit Cell topology optimization of line defect photonic crystal waveguide. Procedia Technol. 12, 174–179 (2014). https://doi.org/10.1016/j.protcy.2013.12.472

    Article  Google Scholar 

  32. Mirjalili, S.M., Abedi, K., Mirjalili, S.: Optical buffer performance enhancement using particle swarm optimization in ring-shape-hole photonic crystal waveguide. Opt. Int. J. Light Electron Opt. 124, 5989–5993 (2013). https://doi.org/10.1016/j.ijleo.2013.04.114

    Article  Google Scholar 

  33. Minkov, M., Savona, V.: Automated optimization of photonic crystals for broadband slow light and ultra-high-Q cavities. Front. Opt. Sci. 5124, 241101 (2015)

    Google Scholar 

  34. Minkov, M., Savona, V.: Wide-band slow light in compact photonic crystal coupled-cavity waveguides. Optica. 2, 631–634 (2015). https://doi.org/10.1364/OPTICA.2.000631

    Article  Google Scholar 

  35. Mellah, H., Mirjalili, S.M., Zhang, X.: Design optimization of waveguide-based LP01–LP0m Mode converter by using artificial intelligence technique. Electron. Lett. 54, 703–705 (2018). https://doi.org/10.1049/el.2018.0466

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Mirjalili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merikhi, B., Mirjalili, S.M., Zoghi, M. et al. Radiation pattern design of photonic crystal LED optimized by using multi-objective grey wolf optimizer. Photon Netw Commun 38, 167–176 (2019). https://doi.org/10.1007/s11107-019-00843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-019-00843-1

Keywords

Navigation