Skip to main content
Log in

A novel proposal for all-optical 1-bit comparator using nonlinear PhCRRs

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

All-optical comparators play crucial roles in all-optical data processing systems. In this paper, we proposed a novel structure for realizing an all-optical comparator, which can compare two 1-bit binary codes. For this purpose, we used three nonlinear resonant rings. The final structure has two input and three output ports. The maximum rise and fall times for the proposed structure are about 1.5 and 2 ps, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hall, K.L., Rauschenbach, K.A.: All-optical bit pattern generation and matching at 10 Gbit/s. Electron. Lett. 32, 1214 (2002)

    Article  Google Scholar 

  2. Martinez, J.M., Herrera, J., Ramos, F., Marti, J.: All-optical address recognition scheme for label-swapping networks. IEEE Photonics Tech. Lett. 18, 151–153 (2006)

    Article  Google Scholar 

  3. Lu, C., Hu, X., Yang, H., Gong, Q.: Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits. Sci. Rep. 4, 3869 (2014)

    Article  Google Scholar 

  4. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Opt. Int. J. Light Electron. Opt. 127, 8706–8709 (2016)

    Article  Google Scholar 

  5. Roshan Entezar, S.: Photonic crystal wedge as a tunable multichannel filter. Superlattices Microstruct. 82, 33–39 (2015)

    Article  Google Scholar 

  6. Medhekar, S., Paltani, P.P.: All optical switching and tunable wavelength filtering in grating assisted. Nonlinear Opt. Quantum Opt. 36, 81–90 (2007)

    Google Scholar 

  7. Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Netw. Commun. 31, 65–70 (2016)

    Article  Google Scholar 

  8. Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Opt. Int. J. Light Electron. Opt. 124, 5923–5926 (2013)

    Article  Google Scholar 

  9. Moniem, T.A.: All optical active high decoder using integrated 2D square lattice photonic crystals. J. Mod. Opt. 62, 1643–1649 (2015)

    Article  Google Scholar 

  10. Park, I., Lee, H.-S., Kim, H.-J., Moon, K.-M., Lee, S.-G., Beom-Hoan, O., Park, S.-G., Lee, E.-H.: Photonic crystal power-splitter based on directional coupling. Opt. Express 12, 3599 (2004)

    Article  Google Scholar 

  11. Afzal, S., Ahmadi, V., Ebnali-Heidari, M.: All-optical tunable photonic crystal nor gate based on the nonlinear Kerr effect in a silicon nanocavity. J. Opt. Soc. Am. B. 30, 2535–2539 (2013)

    Article  Google Scholar 

  12. Youssefi, B., Moravvej-Farshi, M.K., Granpayeh, N.: Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals. Opt. Commun. 285, 3228–3233 (2012)

    Article  Google Scholar 

  13. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 1–11 (2017)

    Article  Google Scholar 

  14. Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low-Dimens. Syst. Nanostruct. 83, 101–106 (2016)

    Article  Google Scholar 

  15. Jiang, Y.-C., Liu, S.-B., Zhang, H.-F., Kong, X.-K.: Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals. Opt. Commun. 348, 90–94 (2015)

    Article  Google Scholar 

  16. Salmanpour, A., Mohammadnejad, S., Bahrami, A.: Photonic crystal logic gates: an overview. Opt. Quantum Electron. 47, 2249–2275 (2015)

    Article  MATH  Google Scholar 

  17. Liu, W., Yang, D., Shen, G., Tian, H., Ji, Y.: Design of ultra compact all-optical XOR, XNOR, NAND and OR gates using photonic crystal multi-mode interference waveguides. Opt. Laser Technol. 50, 55–64 (2013)

    Article  Google Scholar 

  18. D’souza, N.M., Mathew, V.: Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt. Laser Technol. 80, 214–219 (2016)

    Article  Google Scholar 

  19. Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys. E Low-Dimens. Syst. Nanostruct. 75, 77–85 (2016)

    Article  Google Scholar 

  20. Chung, L.-W., Lee, S.-L.: Multimode-interference-based broad-band demultiplexers with internal photonic crystals. Opt. Express 14, 4923 (2006)

    Article  Google Scholar 

  21. Tang, C., Dou, X., Lin, Y., Yin, H., Wu, B., Zhao, Q.: Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-mode interference for BPSK signals. Opt. Commun. 316, 49–55 (2014)

    Article  Google Scholar 

  22. Soldano, L.B., Pennings, E.C.M.: Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightwave Technol. 13, 615–627 (1995)

    Article  Google Scholar 

  23. haq Shaik, E., Rangaswamy, N.: Multi-mode interference-based photonic crystal logic gates with simple structure and improved contrast ratio. Photonic Netw. Commun. 34, 140–148 (2017)

    Article  Google Scholar 

  24. Xavier, S.C., Arunachalam, K., Caroline, E., Johnson, W.: Design of two-dimensional photonic crystal-based all-optical binary adder. Opt. Eng. 52, 25201 (2013)

    Article  Google Scholar 

  25. Danaie, M., Kaatuzian, H.: Design and simulation of an all-optical photonic crystal and gate using nonlinear Kerr effect. Opt. Quantum Electron. 44, 27–34 (2012)

    Article  Google Scholar 

  26. Salmanpour, A., Mohammadnejad, S., Omran, P.T.: All-optical photonic crystal NOT and OR logic gates using nonlinear Kerr effect and ring resonators. Opt. Quantum Electron. 47, 3689–3703 (2015)

    Article  MATH  Google Scholar 

  27. Hassangholizadeh-Kashtiban, M., Sabbaghi-Nadooshan, R., Alipour-Banaei, H.: A novel all optical reversible 4 × 2 encoder based on photonic crystals. Opt. Int. J. Light Electron. Opt. 126, 2368–2372 (2015)

    Article  Google Scholar 

  28. Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26, 10 (2008)

    Article  Google Scholar 

  29. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt. 56, 1799–1806 (2017)

    Article  Google Scholar 

  30. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron. 49, 38 (2017)

    Article  Google Scholar 

  31. Gupta, M.M., Medhekar, S.: All-optical NOT and AND gates using counter propagating beams in nonlinear Mach–Zehnder interferometer made of photonic crystal waveguides. Opt. Int. J. Light Electron. Opt. 127, 1221–1228 (2016)

    Article  Google Scholar 

  32. Zhu, Z.-H., Ye, W.-M., Ji, J.-R., Yuan, X.-D., Zen, C.: High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt. Express 14, 1783–1788 (2006)

    Article  Google Scholar 

  33. Gupta, M.M., Medhekar, S.: All-optical NOT and AND gates using counter propagating beams in nonlinear Mach–Zehnder interferometer made of photonic crystal waveguides. Optik (Stuttg) 127, 1221–1228 (2016)

    Article  Google Scholar 

  34. Alipour-Banaei, H., Mehdizadeh, F.: Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Optik (Stuttg) 124, 2639–2644 (2013)

    Article  Google Scholar 

  35. Jung, Y.J., Yu, S., Koo, S., Yu, H., Han, S., Park, N., Kim, J.H., Jhon, Y.M., Lee, S.: Reconfigurable all-optical logic AND, NAND, OR, NOR, XOR and XNOR gates implemented by photonic crystal nonlinear cavities. In: Conference on Lasers and Electro-Optics/Pacific Rim. p. TuB4_3. Optical Society of America (2009)

  36. Manzacca, G., Paciotti, D., Marchese, A., Moreolo, M.S., Cincotti, G.: 2D photonic crystal cavity-based WDM multiplexer. Photonics Nanostruct. Fundam. Appl. 5, 164–170 (2007)

    Article  Google Scholar 

  37. Seif-Dargahi, H., Zavvari, M., Alipour-Banaei, H.: Very compact photonic crystal resonant cavity for all optical filtering. J. Theor. Appl. Phys. 8, 183–188 (2014)

    Article  Google Scholar 

  38. Zamani, M.: Photonic crystal-based optical filters for operating in second and third optical fiber windows. Superlattices Microstruct. 92, 157–165 (2016)

    Article  Google Scholar 

  39. Tavousi, A., Mansouri-Birjandi, M.A.: Study on the similarity of photonic crystal ring resonator cavity modes and whispering-gallery-like modes in order to design more efficient optical power dividers. Photonic Netw. Commun. 32, 160–170 (2016)

    Article  Google Scholar 

  40. Taalbi, A., Bassou, G., Youcef Mahmoud, M.: New design of channel drop filters based on photonic crystal ring resonators. Opt. Int. J. Light Electron. Opt. 124, 824–827 (2013)

    Article  Google Scholar 

  41. Li, L., Liu, G.Q.: Photonic crystal ring resonator channel drop filter. Opt. Int. J. Light Electron. Opt. 124, 2966–2968 (2013)

    Article  Google Scholar 

  42. Saghirzadeh Darki, B., Granpayeh, N.: Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method. Opt. Commun. 283, 4099–4103 (2010)

    Article  Google Scholar 

  43. Youcef Mahmoud, M., Bassou, G., Taalbi, A.: A new optical add–drop filter based on two-dimensional photonic crystal ring resonator. Opt. Int. J. Light Electron. Opt. 124, 2864–2867 (2013)

    Article  Google Scholar 

  44. Youcef Mahmoud, M., Bassou, G., Metehri, F.: Channel drop filter using photonic crystal ring resonators for CWDM communication systems. Opt. Int. J. Light Electron. Opt. 125, 4718–4721 (2014)

    Article  Google Scholar 

  45. Youcef Mahmoud, M., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285, 368–372 (2012)

    Article  Google Scholar 

  46. Mansouri-Birjandi, M.A., Tavousi, A., Ghadrdan, M.: Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators. Photonics Nanostruct. Fund. Appl. 21, 44–51 (2016)

    Article  Google Scholar 

  47. Tavousi, A., Mansouri-Birjandi, M.A.: Performance evaluation of photonic crystal ring resonators based optical channel add-drop filters with the aid of whispering gallery modes and their Q-factor. Opt. Quantum Electron. 47, 1613–1625 (2015)

    Article  Google Scholar 

  48. Alipour-Banaei, H., Mehdizadeh, F.: High sensitive photonic crystal ring resonator structure applicable for optical integrated circuits. Photonic Netw. Commun. 33, 152–158 (2017)

    Article  Google Scholar 

  49. Neisy, M., Soroosh, M., Ansari-Asl, K.: All optical half adder based on photonic crystal resonant cavities. Photonic Netw. Commun. 35, 245–250 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrnoush Asghari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surendar, A., Asghari, M. & Mehdizadeh, F. A novel proposal for all-optical 1-bit comparator using nonlinear PhCRRs. Photon Netw Commun 38, 244–249 (2019). https://doi.org/10.1007/s11107-019-00853-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-019-00853-z

Keywords

Navigation