Skip to main content
Log in

Design and implementation of circuit-switched network based on nanoscale quantum-dot cellular automata

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) is a nanoscale technology to design digital circuits in nano-measure which acts based on electron’s interaction. The technology of collecting, processing and distributing information is growing rapidly, but the growth in demand for advanced methods in data processing has always been greater than the speed of growth of these technologies. Hence, computer networks play an important role in providing a resource sharing and facilitating user communications. The circuit-switched network is one of the main components for sending input signals between different users within the network. In this paper, a minimal and optimal design of the circuit-switched network is presented at a single level in QCA. The proposed design is studied and compared with existing designs in terms of fault tolerant under stuck-at 0 and 1. There is also a physical analysis for the proposed circuit-switched network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ahmadpour, S., Mosleh, M., Heikalabad, S.R.: Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int. J. Circ. Theor. App. 47(7), 1037–1056 (2019)

    Article  Google Scholar 

  2. Norouzi, A., Heikalabad, S.R.: Design of reversible parity generator and checker for the implementation of nano-communication systems in quantum-dot cellular automata. Photonic Netw. Commun. (2019). https://doi.org/10.1007/s11107-019-00850-2

    Article  Google Scholar 

  3. Nejad, M.Y., Mosleh, M., Heikalabad, S.R.: An LSB-based quantum audio watermarking using MSB as arbiter. Int. J. Theor. Phys. (2019). https://doi.org/10.1007/s10773-019-04251-z

    Article  Google Scholar 

  4. Lent, C., Tougaw, P.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)

    Article  Google Scholar 

  5. Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62(7), 714–716 (1993)

    Article  Google Scholar 

  6. Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of anultra-area-efficientfault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)

    Article  Google Scholar 

  7. Milad, B., Mahya, S., Alireza, A., Keivan, N., Nader, B.: A 3D universal structure based on molecular-QCA and CNT technologies. J. Mol. Struct. 1119(5), 86–95 (2016). https://doi.org/10.1016/j.molstruc.2016.04.025

    Article  Google Scholar 

  8. Mohammad, M., Majid, M., Saeid, G.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016). https://doi.org/10.1016/j.mejo.2016.02.004

    Article  Google Scholar 

  9. Heikalabad, S.R., Navin, A.H., Hosseinzadeh, M.: Midpoint memory: a special memory structure for data-oriented models implementation. J. Circuits Syst. Comput. 24(5), 1550063 (2015)

    Article  Google Scholar 

  10. Heikalabad, S.R., Navin, A.H., Hosseinzadeh, M.: Content addressable memory cell in quantum-dot cellular automata. Microelectron. Eng. 163, 140–150 (2016)

    Article  Google Scholar 

  11. Karkaj, E.T., Heikalabad, S.R.: Binary to gray and gray to binary converter in quantum-dot cellular automata. Opt. Int. J. Light Electron. Opt. (2017). https://doi.org/10.1016/j.ijleo.2016.11.087

    Article  Google Scholar 

  12. Karkaj, E.T., Heikalabad, S.R.: A testable parity conservative gate in quantum-dot cellular automata. Superlattices Microstruct. (2016). https://doi.org/10.1016/j.spmi.2016.08.054

    Article  Google Scholar 

  13. Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. (2017). https://doi.org/10.1007/s00542-017-3502-x

    Article  Google Scholar 

  14. Heikalabad, S.R., Asfestani, M.N., Hosseinzadeh, M.: A full adder structure without crosswiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. (2017). https://doi.org/10.1007/s11227-017-2206-4

    Article  Google Scholar 

  15. Barughi, Y.Z., Heikalabad, S.R.: A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int. J. Theor. Phys. 56, 2848 (2017). https://doi.org/10.1007/s10773-017-3453-0

    Article  MATH  Google Scholar 

  16. Rad, S.K., Heikalabad, S.R.: Reversible flip-flops in quantum-dot cellular automata. Int. J. Theor. Phys. 56, 2990 (2017). https://doi.org/10.1007/s10773-017-3466-8

    Article  MATH  Google Scholar 

  17. Sadoghifar, A., Heikalabad, S.R.: A content-addressable memory structure using quantum cells in nanotechnology with energy dissipation analysis. Phys. B Condens. Matter 537, 202–206 (2018). https://doi.org/10.1016/j.physb.2018.02.024

    Article  Google Scholar 

  18. Asfestani, M.N., Heikalabad, S.R.: A unique structure for the multiplexer in quantum dot cellular automata to create a revolution. Phys. B Condens. Matter 512, 91–99 (2017). https://doi.org/10.1016/j.physb.2017.02.028

    Article  Google Scholar 

  19. Babaie, S., Sadoghifar, A., Bahar, A.N.: Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA). IEEE Trans. Circuits Syst. II Express Briefs 66, 963–967 (2018)

    Article  Google Scholar 

  20. Salimzadeh, F., Heikalabad, S.R.: Design of a novel reversible structure for full adder/subtractor in quantum-dot cellular automata. Phys. B Phys. Condens. Matter (2018). https://doi.org/10.1016/j.physb.2018.12.028

    Article  Google Scholar 

  21. Heikalabad, S.R., Gadim, M.R.: Design of improved arithmetic logic unit in quantum-dot cellular automata. Int. J. Theor. Phys. 57(6), 1733–1747 (2018). https://doi.org/10.1007/s10773-018-3699-1

    Article  MathSciNet  MATH  Google Scholar 

  22. Kamrani, S., Heikalabad, S.R.: A unique reversible gate in quantum-dot cellular automata for implementation of four flip-flops without garbage outputs. Int. J. Theor. Phys. 57(11), 3340–3358 (2018). https://doi.org/10.1007/s10773-018-3847-7

    Article  MathSciNet  MATH  Google Scholar 

  23. Ahmadpour, S.S., Mosleh, M., Heikalabad, S.R.: A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Phys. B 550, 383–392 (2018). https://doi.org/10.1016/j.physb.2018.09.029

    Article  Google Scholar 

  24. Mariam, Z., Keivan, N.: Ultra-area-efficient reversible multiplier. Microelectron. J. 43(6), 377–385 (2012). https://doi.org/10.1016/j.mejo.2012.02.004

    Article  Google Scholar 

  25. Basu, S.: Realization of combinational multiplier using quantum cellular automata. Int. J. Comput. Appl. 99(19), 1–6 (2014)

    Google Scholar 

  26. Cho, H., Swartzlander Jr., E.E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009). https://doi.org/10.1109/TC.2009.21

    Article  MathSciNet  MATH  Google Scholar 

  27. Dharmendra, K., Debasis, M.: Design of a practical fault-tolerant adder in QCA. Microelectron. J. 53, 90–104 (2016). https://doi.org/10.1016/j.mejo.2016.04.004

    Article  Google Scholar 

  28. Trailokya, N., Ashutosh, K., Anand, M.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Opt. Int. J. Light Electron Opt. 127(20), 8576–8591 (2016). https://doi.org/10.1016/j.ijleo.2016.06.034

    Article  Google Scholar 

  29. Firdous, A.G., Hossein, K., Saeid, A., Shaahin, A., Keivan, N.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016). https://doi.org/10.1016/j.jocs.2016.02.005

    Article  MathSciNet  Google Scholar 

  30. Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J Comput Syst Sci. 80(7), 1404–1414 (2014). https://doi.org/10.1016/j.jcss.2014.04.012

    Article  MathSciNet  MATH  Google Scholar 

  31. Das, J.C., De, D.: Circuit switching with quantum-dot cellular automata. Nano Commun. Netw. (2017). https://doi.org/10.1016/j.nancom.2017.09.002

    Article  Google Scholar 

  32. Asfestani, M.N., Heikalabad, S.R.: A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata. Phys. B Condens. Matter 521, 162–167 (2017)

    Article  Google Scholar 

  33. Sen, B., Sahu, Y., Mukherjee, R., Nath, R.K., Sikdar, B.K.: on the reliability of majority logic structure in quantum-dot cellular automata. Microelectron. J. 47, 7–18 (2016)

    Article  Google Scholar 

  34. Hosseinzadeh, H., Heikalabad, S.R.: A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectron. Eng. 192, 52–60 (2018). https://doi.org/10.1016/j.mee.2018.01.019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Rasouli Heikalabad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heikalabad, S.R., Kamrani, H. Design and implementation of circuit-switched network based on nanoscale quantum-dot cellular automata. Photon Netw Commun 38, 356–377 (2019). https://doi.org/10.1007/s11107-019-00864-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-019-00864-w

Keywords

Navigation