Skip to main content
Log in

SQCA: symmetric key-based crypto-codec for secure nano-communication using QCA

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Security in quantum dot cellular automata (SQCA) is an emerging trend in the arena of nanotechnology. Its features are high computing speed, smaller size and low power depletion in comparison to transistor oriented technology. This article proposes a nanoscale Crypto-Codec circuit which produces cipher texts in order to obtain security during nanocommunication. Single layer crossing is used to design the Crypto-Codec circuit to minimize the fabrication difficulty. In this article higher attention is given to obtain high level of security by providing two layers of security using two different keys at two levels. Cryptographic communication architecture is proposed employing Crypto-Codecs and 2 × 2 Crossbar switch for authentic information sharing. The result resembles with the theoretical values, which endorse the precision of the proposed circuit. Circuit density of the design is calculated to prove that QCA circuits possess higher devise density in comparison to CMOS circuit. Stuck-at-fault analysis is performed to obtain faultless design. The proposed circuit is designed using QCA designer tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Das, J.C., De, D.: QCA based secure nanocommunication block cipher design based on electronic code book. Malays. J. Comput. Sci. 31(2), 130–142 (2018)

    Article  Google Scholar 

  2. Purkayastha, T., De, D., Das, K.: A novel pseudo random number generator based cryptographic architecture using quantum-dot cellular automata. Microprocess. Microsyst. 4, 32–44 (2016)

    Article  Google Scholar 

  3. Mosleh, M.: A novel design of multiplexer based on nano-scale quantum-dot cellular automata. Concurr. Comput. Pract. Exp. (2018). https://doi.org/10.1002/cpe.5070

    Article  Google Scholar 

  4. Lent, C.S., Snider, G.L.: The development of quantum-dot cellular automata. Field-Coupled Nanocomput. 8280, 3–20 (2014)

    Article  Google Scholar 

  5. Pudi, V., Sridharan, K.: A bit-serial pipelined architecture for high-performance dht computation in quantum-dot cellular automata. IEEE Trans. VLSI Syst. 23, 2352–2356 (2015)

    Article  Google Scholar 

  6. Lakshmi, S.K., Rajakumar, G., Saminathan, A.G.: Design and analysis of sequential circuits using nanotechnology based quantum dot cellular automata. J. Nanoelectron. Optoelectron. 10, 601–610 (2015)

    Article  Google Scholar 

  7. Arjmand, M., Soryani, M., Navi, K.: Coplanar wire crossing in quantum cellular automata using a ternary cell. IET Circuits Devices Syst. 7, 263–272 (2013)

    Article  Google Scholar 

  8. Das, J.C., Debnath, B., De, D.: Area efficient low power scan flip-flop design based on quantum-dot cellular automata. Adv. Ind. Eng. Manag. 1, 157–164 (2016)

    Google Scholar 

  9. Das JC, De D. Quantum dot cellular automata based cipher text design for nano communication. Proc. ICRCC, SKP Engg. College, Tamilnadu, India. 2012, 343–348.

  10. Das S, De D. “Nanocommunication using QCA: A data path selector cum router for efficient channel utilization,” in Proc. ICRCC, SKP Engg. College, Tamilnadu, India, 2012, pp. 43–47.

  11. Sardinha, L.H., Costa, A.M.M., Neto, O.P.V., Vieira, L.F.M., Vieira, M.A.M.: Nanorouter: a quantum-dot cellular automata design. IEEE J. Sel. Areas Commun. 31, 825–834 (2013)

    Article  Google Scholar 

  12. Silva, D., Sardinha, L., Vieira, M.A.M., Vieira, L.F.M., Neto, O.P.V.: Robust serial nano-communication with QCA. IEEE Trans. on Nanotechnol. 13, 464–472 (2015)

    Article  Google Scholar 

  13. Das, J.C., De, D.: Circuit switching with quantum-dot cellular automata. Nano Commun. Netw. 14, 16–28 (2017)

    Article  Google Scholar 

  14. Debnath, B., Das, J.C., De, D.: Design of image steganographic architecture using quantum-dot cellular automata for secure nanocommunication networks. Nano Commun. Netw. 15, 41–58 (2018)

    Article  Google Scholar 

  15. Debnath, B., Das, J.C., De, D.: Reversible logic based image steganography using QCA for secure nanocommunication. IET Circuits Devices Syst. 11, 58–67 (2017)

    Article  Google Scholar 

  16. B. Debnath, J. C. Das and D. De, “Fingerprint Authentication using QCA technology,” IEEE Xplore, 2017 Devices for Integrated Circuit (DevIC) October 2017 [ Int. Conference on Raddar, Communication and Computing, SKP Engg. College, Tiruvannamalai, Tamilnadu, India, December 2012].

  17. Yu, C., Wang, L., Xie, G.: Implementation of the new SCV method in quantum-dot cellular automata. IET Circuits Devices Syst. 14, 594–599 (2020)

    Article  Google Scholar 

  18. Debnath, B., Das, J.C., De, D.: Nanoscale cryptographic architecture design using quantum-dot cellular automata. Front. Inf. Technol. Electron. Eng. 20(11), 1578–1586 (2019)

    Article  Google Scholar 

  19. Debnath, B., Das, J.C., De, D., Mondal, S.P., Ahmadian, A., Salimi, M., Ferrara, M.: Security analysis with novel image masking based quantum-dot cellular automata information security model. IEEE Access. 8, 117159–117172 (2020)

    Article  Google Scholar 

  20. Debnath, B., Das, J.C., De, D., Ghaemi, F., Ahmadian, A., Senu, N.: Reversible palm vein authenticator design with quantum dot cellular automata for information security in nanocommunication network. IEEE Access. (2020). https://doi.org/10.1109/ACCESS.2020.3025822

    Article  Google Scholar 

  21. Ahmad, F., Bhat, G.M.: Novel code converters based on quantum-dot cellular automata (QCA). Int. J. Sci. Res. 33, 64–371 (2014)

    Google Scholar 

  22. Sarker, A., Bahar, A.N., Biswas, P.K.: A novel presentation of peres gate (Pg) in quantum-dot cellular automata (QCA). Eur. Sci. J. 10, 101–106 (2014)

    Google Scholar 

  23. Sheikhfaal, S., Angizi, S., Sarmadi, S.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46, 462–471 (2015)

    Article  Google Scholar 

  24. Mustafa, M., Beigh, M.R.: Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count. Indian J. Pure Appl. Phys. 51, 60–66 (2013)

    Google Scholar 

  25. Hashemi, S., Farazkish, R., Navi, K.: New quantum dot cellular automata cell arrangements. J. Comput. Theor. Nanosci. 10, 798–809 (2013)

    Article  Google Scholar 

  26. Santra, S., Roy, U.: Design and optimization of parity generator and parity checker based on quantum-dot cellular automata. Int. J. Comput. Control Quantum Inf. Eng. 8, 464–470 (2014)

    Google Scholar 

  27. Jahan, W.S., Ahmad, P.Z., Peer, M.A.: Circuit nanotechnology: QCA adder gate layout designs. IOSR J. Comput. Eng. 16, 70–78 (2014)

    Article  Google Scholar 

  28. Angizi, S., Alkaldy, E., Bagherzadeh, N.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10, 259–271 (2014)

    Article  Google Scholar 

  29. Sayedsalehi, S., Azghadi, M.R., Angizi, S., Navi, K.: Restoring and non-restoring array divider designs in quantum dot cellular automata. Inform. Sci. 311, 86–101 (2015)

    Article  MathSciNet  Google Scholar 

  30. Fijany, A., Toomarian, B.N.: New design for quantumdot cellular automata to obtain fault tolerant logic gates. J. of Nanoparticle Res. 3, 27–37 (2001)

    Article  Google Scholar 

  31. Momenzadeh M, Tahoori MB, Huang J, Lombardi F. Quantum cellular automata: New defects and faults for new devices. in Proc. of the 18th Intl. Parallel and distributed processing symposium (IPDPS 04), 2004, doi: https://doi.org/10.1109/IPDPS.2004.1303234.

  32. Tahoori, M.B., Huang, J., Momenzadeh, M., Lombardi, F.: Testing of quantum cellular automata. IEEE Trans. Nanotechnol. 3, 1–6 (2004)

    Article  Google Scholar 

  33. Tahoori, M.B., Huang, J., Momenzadeh, M., Lombardi, F.: Characterization, test, and logic synthesis of and-Or-inverter (AOI) gate design for QCA implementation. IEEE Trans. Comput. Aided Des Integr Circuits Syst. 24, 1881–1893 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash Debnath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, B., Das, J.C. & De, D. SQCA: symmetric key-based crypto-codec for secure nano-communication using QCA. Photon Netw Commun 42, 194–208 (2021). https://doi.org/10.1007/s11107-021-00952-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-021-00952-w

Keywords

Navigation