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Abstract

The eigenvalue densities of complex noncentral Wishart matrices are investigated to
study an open problem in information theory. Specifically, the largest, smallest and
joint eigenvalue densities of complex noncentral Wishart matrices are derived. These
densities are expressed in terms of complex zonal polynomials and invariant polynomials.
The connection between the complex Wishart matrix theory and information theory
is given. This facilitates the evaluation of the most important information-theoretic
measure, the so-called ergodic channel capacity. In particular, the capacity of multiple-
input, multiple-output (MIMO) Rician distributed channels is investigated. We consider
both spatially correlated and uncorrelated MIMO Rician channels and derive the exact
and easily computable tight upper bound formulas for ergodic capacities. Numerical
results are also given, which show how the channel correlation degrades the capacity of
the communication system.

Key words. complex random matrix, complex noncentral Wishart matrix, zonal poly-
nomial, invariant polynomial, Rician distributed MIMO channel, ergodic channel capac-
ity
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Résumé

On étudie la densité des valeurs propres de matrices de Wishart noncentrales complexes
en vue d’applications à un problème ouvert de la théorie de l’information. On obtient la
densité conjointe de la plus grande et de la plus petite de ces valeurs propres au moyen
de polynômes zonaux complexes et de polynômes invariants. On établie la relation entre
ces matrices et la théorie de l’information pour évaluer la très importante capacité ergo-
dique d’un canal. On étudie la capacité des canaux riciens distribués à entrées et sorties
multiples (MIMO). On considère les canaux correlés et non correlés dans l’espace et
l’on obtient facilement la borne supérieure exacte des capacités ergodiques. Les résul-
tats numériques montrent que la corrélation du canal réduit la capacité du système de
communication.





1 Introduction

Let an n × m (n ≥ m) complex Gaussian (or normal) random matrix A be distributed as A ∼
CN(M, In ⊗ Σ) with mean E{A} = M and covariance cov{A} = In ⊗ Σ. Here we read the symbol
“∼”as“is distributed as”, CN denotes the complex normal distribution and ⊗ denotes the Kronecker
product. The matrix W = AHA is called a complex noncentral Wishart matrix. If M = 0, W is
called a complex central Wishart matrix.

In this paper, we investigate the densities of the eigenvalues of complex noncentral Wishart
matrices and their applications to information theory. In contrast to the literature in [34], we
consider that the elements of random matrices are complex Gaussian distributed with arbitrary
mean and covariance matrices. This will lead us to consider the beautiful but difficult theory
of complex zonal polynomials and invariant polynomials, which are symmetric polynomials in the
eigenvalues of a complex matrix [24]. These polynomials enable us to represent the derived densities
of the eigenvalues of complex noncentral Wishart matrices as infinite series.

The eigenvalue densities of complex central Wishart matrices, which are studied in [13], [21],
[25] and references therein, are represented by complex hypergeometric functions of a matrix argu-
ment, which can be expressed in terms of complex zonal polynomials. The density of a complex
noncentral Wishart matrix can also be represented by complex hypergeometric functions. How-
ever, the eigenvalue densities of complex noncentral Wishart matrices cannot be solved in terms of
complex zonal polynomials. Here we derive these densities using invariant polynomials, which are
proposed by Davis [6], [7]. These invariant polynomials have two matrix arguments, which extend
the single matrix argument of zonal polynomials. We also derive the largest and smallest eigenvalue
distributions of complex noncentral Wishart matrices. These distributions are used in hypothesis
testing, principal component analysis, canonical correlation analysis, multiple discriminant analysis,
etc. (see [24] and [25]).

The theory of complex noncentral Wishart matrices is used to evaluate the capacity of multiple-
input, multiple-output (MIMO) wireless communication systems. Note that the capacity of a com-
munication channel expresses the maximum rate at which information can be reliably conveyed
by the channel [1]. Let us denote the number of inputs (or transmitters) and the number of out-
puts (or receivers) of the MIMO wireless communication system by nt and nr, respectively, and
assume that the channel coefficients are distributed as complex Gaussian and correlated at the
transmitter end. Then the MIMO channel can be represented by an nr × nt complex random ma-
trix H ∼ CN(M, Inr ⊗ Σ), where Σ represents the channel correlation at the transmitter end. This
means the covariance matrix of the rows of H are denoted by Σ (same for all rows). If Σ = Int (or
σ2Int), then the channel is called an uncorrelated Rician distributed channel, otherwise it is called
a spatially correlated Rician distributed channel. The Rician channel model is used when there is a
strong direct signal path (line-of-sight) between the transmitter and the receiver. Hence, the com-
plex channel coefficients are modeled by non-zero mean. This is a typical satellite communication
environment.

In [26], we assume the MIMO channel matrix H is distributed as H ∼ CN(0, Inr ⊗ Σ), which
leads to a correlated Rayleigh distributed channel. This is a typical fixed or mobile communication
environment. Recent studies show that a MIMO uncorrelated Rayleigh distributed channel (Σ =
σ2Int) achieves almost n more bits per hertz for every 3dB increase in signal-to-noise ratio (SNR)
compared to a single-input single-output (SISO) system, which achieves only one additional bit per
hertz for every 3dB increase in SNR, where n = min{nt, nr}, see [10] and [34]. In this context, we
may mention a MIMO strategy that offers a tremendous potential for increasing the information
capacity of single user wireless communication systems, namely, the Bell-Labs Layered Space-Time
(BLAST) architecture, see [9], [30] and references therein. But in many practical situation, channel
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correlation exists due to poor scattering conditions, which degrade capacity (see [26] and references
therein).

In [3], the authors studied the correlated Rayleigh channel matrix with larger dimension (asymp-
totic analysis), which is only an approximation to the practical correlated channel matrix with finite
dimension. In [32], the authors quantified the effect of channel correlations on the MIMO Rayleigh
channel capacity by employing an abstract scattering model. More recently, an exact ergodic ca-
pacity expression for an uncorrelated Rayleigh MIMO channel matrix was derived in [31], which
is different from the work of Telatar [34]. They also derived a tight upper bound to the ergodic
capacity for correlated MIMO Rayleigh channels. In [28] and [29], we consider both transmitter
and receiver correlation effect on the capacity of MIMO Rayleigh channels.

In [15] and [19], the authors first studied the distribution of the largest eigenvalue of Σ−1AAH ,
which is a special case of the complex noncentral Wishart matrix studied in this paper and does
not required the invariance polynomial representation. Then they used this distribution to analyze
the performance of MIMO MRC (maximal ratio combining) systems. Specifically, they obtained
closed-form expressions for the outage probability of MIMO MRC systems operating over a Rician
fading channel. In [17], the same authors extended their earlier work by studying the impact of
correlation on the performance of MIMO MRC systems and on the MIMO channel capacity over
Rayleigh fading channels. In [16], again the same authors presented the exact result on the moment
generating function (MGF) of the MIMO channel capacity for independent but not necessarily
identically distributed Rician paths. In [18], they extended the MIMO Rician channel capacity
results in the presence of Rayleigh cochannel interference. In [14], the authors studied the capacity
of uncorrelated MIMO Rician channel. In [35], a single-input multiple-output Rician channel model
is studied. All these studies were limited to independent Rician fading channels and the impact of
spatial correlation was not addressed for MIMO Rician fading channels.

It is clear that Rayleigh channels and additive white Gaussian noise (AWGN) channels are special
cases of a more general spatially correlated MIMO Rician channel model. Therefore, analyzing this
more general model is a valuable contribution to the literature. In this paper, we first derive
the eigenvalues densities of complex noncentral Wishart matrices. Then, using these densities we
evaluate the capacity of spatially correlated MIMO Rician channel matrices H ∼ CN(M, Inr ⊗ Σ)
with nr ≥ nt. This will be done by deriving closed-form ergodic capacity formulas and evaluating
them numerically.

This paper is organized as follows. Section 2 provides the necessary tools for deriving the
distribution theory and channel capacity. The complex noncentral Wishart matrix is studied in
Section 3. The capacity of MIMO channels is studied in Section 4 and the computational methods
are given in Section 5. Finally, concluding remaks are given in Section 6.

2 Preliminaries

The eigenvalue density can be calculated using differential forms on manifold. In addition, the
expression of the noncentral multivariate density functions requires integration with respect to Haar
measures on locally compact group [24]. In this section we address these issues for the complex
multivariate distribution. We start by defining the Stiefel manifold.
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The Stiefel manifold

The set of all matrices E ∈ Cn×m (n ≥ m) with orthonormal columns is called the Stiefel manifold,
denoted by CV m,n. Thus,

CV m,n = {E ∈ Cn×m;EHE = Im}.
The elements of E can be regarded as the coordinates of a point on a (2mn − m2)-dimensional
surface in 2mn-dimensional Euclidean space. The volume of the Stiefel manifold CV m,n is given in
[27] by

Vol(CV m,n) =

∫

CVm,n

(EHdE) =
2mπmn

CΓm(n)
,

where the complex multivariate gamma function is

CΓm(a) = πm(m−1)/2

m∏

k=1

Γ(a− k + 1), Re(a) > m− 1.

If m = n, then we get a special case of Stiefel manifold, the so-called unitary manifold, defined by

CV m,m = {E ∈ Cm×m;EHE = Im} ≡ U(m),

where U(m) denotes the group of unitary m×m matrices. The volume of U(m) is given by

Vol [U(m)] =

∫

U(m)

(EHdE) =
2mπm

2

CΓm(m)
.

The differential form

(dE) , 1

Vol[U(m)]
(EHdE) =

CΓm(m)

2mπm2 (EHdE)

has the property that ∫

U(m)

(dE) = 1,

and it represents the normalized Haar invariant probability measure on U(m).

Complex zonal polynomials

First, we define the complex multivariate hypergeometric coefficients [a]κ which frequently occur in
integrals involving complex zonal polynomials. Let κ = (k1, . . . , km) be a partition of the integer k
with k1 ≥ · · · ≥ km ≥ 0 and k = k1 + · · ·+ km. Then [20]

[a]κ =
m∏
i=1

(a− i+ 1)ki
,

where (a)k = a(a + 1) · · · (a + k − 1) and (a)0 = 1. The complex zonal polynomial4 of a complex
matrix X ∈ Cm×m is defined in [13] as

Cκ(X) = χ[κ](1)χ[κ](X), (1)

4 Note that in the literature the real and the complex zonal polynomials are denoted by Cκ(X) and C̃κ(X),
respectively. However, we use Cκ(X) for the complex case because we are not considering the real case in this paper.
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where χ[κ](1) is the dimension of the representation [κ] of the symmetric group on k symbols given
by

χ[κ](1) = k!

∏m
i<j(ki − kj − i+ j)∏m
i=1(ki +m− i)!

,

and χ[κ](X) is the character of the representation [κ] of the linear group given as a symmetric
function of the eigenvalues, µ1, . . . , µm, of X by

χ[κ](X) =
det
[(
µ
kj+m−j
i

)]

det
[(
µm−ji

)] .

The following basic properties are given in [13]:

(trX)k =
∑
κ

Cκ(X) (2)

and ∫

U(m)

Cκ(AXBX
H)(dX) =

Cκ(A)Cκ(B)

Cκ(Im)
, (3)

where (dX) is the normalized invariant measure on the unitary group U(m) and

Cκ(Im) = 22kk!

(
1

2
m

)

κ

∏r
i<j(2ki − 2kj − i+ j)∏r

i=1(2ki + r − i)!

with (
1

2
m

)

κ

=
r∏
i=1

(
1

2
(m− i+ 1)

)

ki

.

Note that the partition κ of k has r nonzero parts.

Complex hypergeometric functions

The probability distributions of complex random matrices are often derived in terms of complex
hypergeometric functions of matrix arguments. The following two definitions of complex hypergeo-
metric functions with single and double matrix argument are due to Constantine [5].

Definition 1 The hypergeometric function of one complex matrix is defined as5

pFq(a1, . . . , ap; b1, . . . , bq;X) =
∞∑

k=0

∑
κ

[a1]κ · · · [ap]κ
[b1]κ · · · [bq]κ

Cκ(X)

k!
, (4)

where X ∈ Cm×m, {ai}pi=1 and {bi}qi=1 are arbitrary complex numbers, and
∑

κ denotes summation
taken over all partitions of k into m parts.

Note that none of the parameters bi is allowed to be zero or an integer or half-integer ≤ m − 1.
Otherwise some of the denominator terms are zero [24].

Remark 1 The convergence of (4) is given in [24]:

5Note that in the literature the real and the complex hypergeometric functions are denoted by pFq and pF̃q,
respectively. However, we use pFq for the complex case because we are not considering the real case in this paper.
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(i) If p ≤ q, then the series converges for all X.

(ii) If p = q + 1, then the series converges for σ(X) < 1, where the spectral radius, σ(X), of X is
the maximum of the absolute values of the eigenvalues of X.

(iii) If p > q + 1, then the series diverges for all X 6= 0, unless it terminates. Note that the series
terminates when some of the numerators [aj]κ in the series vanish.

Special cases are

0F0(X) = etr(X), 1F0(a;X) = det(I −X)−a, a ∈ R,
and

0F1(n;ZZH) =

∫

U(n)

etr(ZE + ZE)(dE),

where Z is an m × n complex matrix with m ≤ n, etr denotes the exponential of the trace,
etr(·) = exp(tr(·)), and ZE denotes the complex conjugate of ZE.

Definition 2 The hypergeometric function of two complex matrices is defined by

pF
(m)
q (a1, . . . , ap; b1, . . . , bq;X,Y ) =

∞∑

k=0

∑
κ

[a1]κ · · · [ap]κ
[b1]κ · · · [bq]κ

Cκ(X)Cκ(Y )

k! Cκ(Im)
, (5)

where X,Y ∈ Cm×m.

The splitting formula is ∫

U(m)
pFq(AEBE

H)(dE) = pF
(m)
q (A,B). (6)

Invariant polynomials

In this section, we describe a class of homogeneous polynomials Cκ,τ
φ (X, Y ) of degrees k and t in

the elements of the m × m symmetric complex matrices X and Y , respectively, (see, [6], [7] and
[4]). These polynomials are invariant under the simultaneous transformations

X → EHXE, Y → EHY E, E ∈ U(m).

Moreover, these polynomials satisfy the following relationship
∫

U(m)

Cκ(AE
HXE)Cτ (BE

HY E)(dE) =
∑

φ∈κ.τ

Cκ,τ
φ (A,B)Cκ,τ

φ (X,Y )

Cφ(I)
, (7)

where Cκ, Cτ and Cφ are zonal polynomials, indexed by the ordered partitions κ, τ and φ of the
nonnegative integers k, t, and f = k + t, respectively, into not more than m parts. If we let
Gl(m,C) denote the general linear group of m × m nonsingular complex matrices, then φ ∈ κ.τ
denotes the irreducible representation of Gl(m,C) indexed by 2φ that occurs in the decomposition of
the Kronecker product 2κ⊗2τ of the irreducible representations indexed by 2κ and 2τ [6]. Equation
(7) can also be written as

∫

U(m)

etr(AEHXE +BEHY E)(dE) =
∞∑

k,t=0

∑

κ,τ ;φ∈κ.τ

Cκ,τ
φ (A,B)Cκ,τ

φ (X,Y )

k! t! Cφ(I)
. (8)

The followings are true:
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• Cκ,τ
φ (X,X) = θκ,τφ Cφ(X), where θκ,τφ = Cκ,τ

φ (I, I)/Cφ(I),

• Cκ,τ
φ (X, I) =

[
θκ,τφ Cφ(I)/Cκ(I)

]
Cκ(X),

• Cκ,0
κ (X,Y ) = Cκ(X) and C0,τ

τ (X,Y ) = Cτ (Y ),

• Cκ(X)Cτ (Y ) =
∑

φ∈κ.τ θ
κ,τ
φ Cκ,τ

φ (X, Y ).

The incomplete gamma function can be written [6] as

∫ X

0

etr(−AY )(detY )n−mCτ (BY )(dY ) =
CΓm(n)CΓm(m)

CΓm(m+ n)
(detX)n

×
∞∑

k=0

∑

κ;φ∈κ.τ

[n]φθ
κ,τ
φ Cκ,τ

φ (−AX,BX)

k! [n+m]φ
. (9)

3 The Complex Noncentral Wishart Matrices

In this section, the complex noncentral Wishart distribution is studied. In Subsection 3.1, we derived
the joint eigenvalue density of complex noncentral Wishart matrix. The maximum and minimum
eigenvalue distributions are derived in Subsections 3.2 and 3.3, respectively.

The definition of the complex noncentral Wishart distribution is as follows.

Definition 3 Let W = AHA, where the n×m (n ≥ m) matrix A is distributed as A ∼ CN(M, In⊗
Σ). Then W is said to have the complex noncentral Wishart distribution with n degrees of freedom,
covariance matrix Σ, and matrix of noncentrality parameters Ω = Σ−1MHM . We shall write
W ∼ CWm(n,Σ,Ω).

Let W ∼ CWm(n,Σ,Ω) with n ≥ m. Then the density of W is given by

f(W ) =
1

CΓm(n)(det Σ)n
etr
(−Σ−1W

)
(detW )n−m etr (−Ω) 0F1

(
n; ΩΣ−1W

)
, (10)

where Ω = Σ−1MHM .

If M = 0 in Definition 3 and (10) we obtain the distribution of the complex central Wishart
matrix, which is denoted by W ∼ CWm(n,Σ) and its density is given by

f(W ) =
1

CΓm(n)(det Σ)n
etr
(−Σ−1W

)
(detW )n−m. (11)

Theorem 1 The complex noncentral Wishart density can be expressed in terms of the complex
central Wishart density, i.e.,

CWm(n,Σ,Ω) = CWm(n,Σ, 0)
∞∑

k,t=0

∑

κ,τ ;φ∈κ.τ

θκ,τφ Cκ,τ
φ (−Ω,ΩΣ−1W )

k! t! [n]τ
, (12)

where Cκ,τ
φ is an invariant polynomial, indexed by the ordered partitions κ, τ and φ of the nonnegative

integers k, t, and f = k + t, respectively, into not more than m parts and θκ,τφ = Cκ,τ
φ (I, I)/Cφ(I).
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Proof. We have

CWm(n,Σ,Ω) = CWm(n,Σ, 0) etr(−Ω)0F1(n; ΩΣ−1W )

= CWm(n,Σ, 0)
∞∑

k,t=0

∑
κ,τ

Cκ(−Ω)

k!

Cτ (ΩΣ−1W )

t! [n]τ

= CWm(n,Σ, 0)
∞∑

k,t=0

∑

κ,τ ;φ∈κ.τ

θκ,τφ Cκ,τ
φ (−Ω,ΩΣ−1W )

k! t! [n]τ
.

The proof is complete. �

3.1 Joint eigenvalue density

Here we consider the joint eigenvalue density of a complex noncentral Wishart matrix. The following
proposition is required in the sequel.

Proposition 1 Let W be an arbitrary m×m positive definite complex random matrix with density
function f(W ). Then the joint density function of the eigenvalues, λ1 > · · · > λm > 0, of W is

f(Λ) =
πm(m−1)

CΓm(m)

m∏

k<l

(λk − λl)
2

∫

U(m)

f(EΛEH)(dE), (13)

where Λ = diag(λ1, . . . , λm) and W = EΛEH is the eigendecomposition W .

The joint eigenvalue density of a complex noncentral Wishart matrix is given by the following
theorem.

Theorem 2 Suppose that n ≥ m and consider the m×m positive definite Hermitian matrix W ∼
CWm(n,Σ,Ω). Then the joint density of the eigenvalues, λ1 > · · · > λm > 0, of W is

f(Λ) =
πm(m−1)(det Σ)−n

CΓm(m)CΓm(n)
etr(−Ω)

m∏

k=1

λn−mk

m∏

k<l

(λk − λl)
2

×
∞∑

k,t=0

∑

κ,τ ;φ∈κ.τ

Cκ,τ
φ (−Σ−1,ΩΣ−1)Cκ,τ

φ (Λ,Λ)

k! t! [n]τ Cφ(Im)
, (14)

where Λ = diag(λ1, . . . , λm) and Cκ,τ
φ is an invariant polynomial, indexed by the ordered partitions

κ, τ and φ of the nonnegative integers k, t, and f = k+ t, respectively, into not more than m parts.

Proof. From Proposition 1 we obtain

f(Λ) =
πm(m−1)

CΓm(m)

m∏

k<l

(λk − λl)
2

∫

U(m)

f(EΛEH)(dE)

=
πm(m−1)(det Σ)−n

CΓm(m)CΓm(n)
etr(−Ω)

m∏

k=1

λn−mk

m∏

k<l

(λk − λl)
2

×
∫

U(m)

etr
(−Σ−1EΛEH

)
0F1

(
n; ΩΣ−1EΛEH

)
(dE)

=
πm(m−1)(det Σ)−n

CΓm(m)CΓm(n)
etr(−Ω)

m∏

k=1

λn−mk

m∏

k<l

(λk − λl)
2

×
∞∑

k,t=0

∑
κ,τ

1

k! t! [n]τ

∫

U(m)

Cκ(−Σ−1EΛEH)Cτ (ΩΣ−1EΛEH)(dE).
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The result follows from equation (7). �

3.2 Distribution of λmax

In this subsection, we derive the distribution of the largest eigenvalue, λmax, of a complex noncentral
Wishart matrix and apply it to hypothesis testing. The following theorem is needed.

Theorem 3 Let W ∼ CWm(n,Σ,Ω) (n ≥ m) and ∆ be an m ×m positive definite matrix. Then
the probability P (W < ∆) is given by

P (W < ∆) =
CΓm(m)(det ∆)n etr(−Ω)

CΓm(n+m)(det Σ)n

∞∑

k,t=0

∑

κ,τ ;φ∈κ.τ

[n]φθ
κ,τ
φ Cκ,τ

φ (−Σ−1∆,ΩΣ−1∆)

k! t! [n]τ [n+m]φ
, (15)

where Cκ,τ
φ is an invariant polynomial, indexed by the ordered partitions κ, τ and φ of the nonnegative

integers k, t, and f = k + t, respectively, into not more than m parts and θκ,τφ = Cκ,τ
φ (I, I)/Cφ(I).

Proof. Using the complex noncentral Wishart density (10) we can write P (W < ∆) as

P (W < ∆) =
etr(−Ω)

CΓm(n)(det Σ)n

∫ ∆

0

etr(−Σ−1W )(detW )n−m0F1(n; ΩΣ−1W )(dW )

=
etr(−Ω)

CΓm(n)(det Σ)n

∞∑
t=0

∑
τ

∫ ∆

0

etr(−Σ−1W )(detW )n−mCτ (ΩΣ−1W )

t! [n]τ
(dW ).

The result follows from equation (9). �
The following corollary to Theorem 3 describes the distribution of λmax.

Corollary 1 If W ∼ CWm(n,Σ,Ω) and λmax is the largest eigenvalue of W , then its distribution
is given by

P (λmax < y) =
ymnCΓm(m) etr(−Ω)

CΓm(n+m)(det Σ)n

∞∑

k,t=0

∑

κ,τ ;φ∈κ.τ

[n]φθ
κ,τ
φ Cκ,τ

φ (−yΣ−1, yΩΣ−1)

k! t! [n]τ [n+m]φ
, (16)

where Cκ,τ
φ is an invariant polynomial, indexed by the ordered partitions κ, τ and φ of the nonnegative

integers k, t, and f = k + t, respectively, into not more than m parts, and θκ,τφ = Cκ,τ
φ (I, I)/Cφ(I).

The density of λmax is obtained by differentiating (16) with respect to y.

Proof. The inequality λmax < y is equivalent to W < yI. Therefore, the result follows by letting
∆ = yI in Theorem 3. �

The distributional result in Corollary 1 can be used to test hypotheses about Σ using statistics
which are functions of λmax. For example, consider the null hypothesis H0 : Σ = Im. A test on size
α based on the largest eigenvalue λmax is to reject H0 if λmax > λ(α,m, n), where λ(α,m, n) is the
upper 100α% point of the distribution of λmax when Σ = Im, i.e., PIm(λmax > λ(α,m, n)) = α. The
power function of this test is given by

β(Σ) = PΣ(λmax > λ(α,m, n)),

which depends on Σ only through its eigenvalues. The percentage points and power can be computed
using the distribution function given in Corollary 1.
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3.3 Distribution of λmin

In this subsection, we derive the distribution of the smallest eigenvalue, λmin, of a complex noncentral
Wishart matrix. This distribution can also be used to test the structure of the covariance matrix Σ,
as explained in the previous subsection. In addition, the distribution of λmin is useful in the area of
the principal component analysis. Here it would be of interest to find out the number of eigenvalues
which are significant in Σ. The following theorem is used to derive the distribution of λmin.

Theorem 4 If W ∼ CWm(n,Σ,Ω) (n ≥ m) and ∆ is an m×m positive definite matrix, then the
probability P (W > ∆) can be written as

P (W > ∆) =
etr(−Ω) etr (−Σ−1∆) (det ∆)n

CΓm(n)(det Σ)n

∞∑
t=0

∑
τ

1

t![n]τ

×
∫

X>0

etr(−∆1/2Σ−1∆1/2X) det(I +X)n−mCτ (ΩΣ−1∆1/2(I +X)∆1/2)(dX), (17)

where τ is a partition of t.

Proof. Using the complex noncentral Wishart density (10) we can write P (W > ∆) as

P (W > ∆) =
etr(−Ω)

CΓm(n)(det Σ)n

∫

W>∆

etr
(−Σ−1W

)
(detW )n−m0F1

(
n; ΩΣ−1W

)
(dW ).

The change of variable W = ∆1/2(I +X)∆1/2 leads to the differential form (dW ) = (det ∆)m(dX).
Hence,

P (W > ∆) =
etr(−Ω) etr(−Σ−1∆)(det ∆)n

CΓm(n)(det Σ)n

×
∫

X>0

etr
(−∆1/2Σ−1∆1/2X

)
det(I +X)n−m0F1(n; ΩΣ−1∆1/2(I +X)∆1/2)(dX).

The result follows by expanding 0F1(n; ΩΣ−1∆1/2(I +X)∆1/2) in terms of zonal polynomials. �
The distribution of the smallest eigenvalue is given in the following corollary.

Corollary 2 If W ∼ CWm(n,Σ,Ω) and λmin is the smallest eigenvalue of W, then

P (λmin > y) =
ymn etr(−Ω) etr (−yΣ−1)

CΓm(n)(det Σ)n

∞∑
t=0

∑
τ

1

t! [n]τ

×
∫

X>0

etr(−yΣ−1X) det(I +X)n−mCτ (yΩΣ−1(I +X))(dX), (18)

where τ is a partition of t. The density of λmin is obtained by differentiating (18) with respect to y
and then changing the sign.

Proof. The inequality λmin > y is equivalent to W > yI. Therefore, the result follows by letting
∆ = yI in Theorem 4. �
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4 The MIMO Channel Capacity

In recent years, multiple-antenna techniques have become a pervasive idea that promises extremely
high spectral efficiency for wireless communications. Two issues of concern here are:

(i) the information-theoretic aspects of data transmission using MIMO techniques with emphasis
on spectral efficiency and information capacity,

(ii) the practical feasibility of these techniques, aimed at the realization of a significant portion of
the capacity promised by information theory, see [9], [30] and references therein.

The basic information theory result reported in the pioneering papers by Foschini and Gans [10] and
Telatar [34] showed that enormous spectral efficiency can be achieved through the use of multiple-
antenna systems. The major conclusion of their work is that the capacity of a MIMO system far
exceeds that of a single-antenna system. In particular, in a Rayleigh flat fading environment, a
MIMO link has an asymptotic capacity that increases linearly with the number of transmitter and
receiver antennas, provided that the complex-valued propagation coefficients between all pairs of
transmitter and receiver antennas are statistically independent and known to the receiver antenna
array. Here we consider a more general MIMO Rician fading environment and the results presented
in the first part of this paper are used to evaluate the capacity of this wireless communication
systems. A MIMO channel can be represented by an nr × nt complex random matrix H, where nt
and nr are the number of inputs (or transmitters) and outputs (or receivers) of the communication
system, respectively, as shown in Figure 1.

+

+

+

x1

x2

v1

v2

y2

nx
t

y1

ynr

vnr

h11

h12 h21

h22

h2nr

hn  1t

hn  2t
hn  nt r

h1nr

Figure 1: A MIMO communication system.

The complex signal received at the jth output can be written as

yj =
nt∑
i=1

hijxi + vj, (19)

where hij is the complex channel coefficient between input i and output j, xi is the complex signal
at the ith input and vj is complex Gaussian noise with unit variance. The signal vector received at
the output can be written as


y1
...
ynr


 =




h11 · · · hnt1
...

...
...

h1nr · · · hntnr






x1
...
xnt


+




v1
...
vnr


 ,
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i.e., in vector notation,
y = Hx+ v, (20)

where y, v ∈ Cnr , H ∈ Cnr×nt , x ∈ Cnt and v ∼ CN(0, Inr). It should be noted that the noise v is
independent of the input signal x and channel matrix H. The total input power is constrained to
ρ,

E{xHx} ≤ ρ or tr E{xxH} ≤ ρ.

We shall deal exclusively with the linear model (20) and compute the capacity of different MIMO
channel models in the sequel. We are particularly interested in two-channel models, namely the
Rayleigh and Rician distributed channels. The following proposition defines those channel models
[23].

Proposition 2 Let z = reiθ ∼ CN(µz, σ
2) denote an element hij of matrix H, where

E{z} = µz = |µz| exp(iφ), var{z} = E|z − µz|2 = σ2

and

f(z) =
1

πσ2
exp

(−|z − µz|2
σ2

)
.

Then the joint density g(r, θ|µz, σ2) of r and θ is given by

g(r, θ|µz, σ2) =
r

πσ2
exp

(−(r2 + |µz|2)
σ2

)
exp

(
2|µz|r cos(θ − φ)

σ2

)
. (21)

Therefore, the density of the magnitude or envelope r is given by

h(r|µz, σ2) =
r

πσ2
exp

(−(r2 + |µz|2)
σ2

)∫ 2π

0

exp

(
2|µz|r cos(θ − φ)

σ2

)
dθ

=

{
2r
σ2 exp

(
−(r2+|µz |2)

σ2

)
I0

(
2|µz |r
σ2

)
r ≥ 0

0 r < 0,
(22)

where I0 is the modified Bessel function of the first kind and order zero. The density of the phase
θ is given by

k(θ|µz, σ2) =
1

πσ2
exp

(−|µz|2
σ2

)∫ ∞

0

r exp

(−r2

σ2

)
exp

(
2|µz|r cos(θ − φ)

σ2

)
dr

=





1
2π

exp
(
−|µz |2[1+sin2(θ−φ)]

2σ2

)
D−2

(
−|µz|

(
2
σ2

)1/2
cos(θ − φ)

)

0 ≤ θ < 2π
0 otherwise,

(23)

where D−v is the parabolic cylinder function. If µz = 0, then the density h(r|σ2) is given by

h(r|σ2) =

{
2r
σ2 exp

(
−r2
σ2

)
r ≥ 0,

0 r < 0.
(24)

In this case, the distribution of the phase θ is uniform and its density is given by

k(θ|σ2) =

{
1
2π

0 ≤ θ < 2π,
0 otherwise.

(25)
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Definition 4 The density h(r|σ2) is called the Rayleigh density and the density h(r|µz, σ2) is called
the Rician density. The Rician K-factor is defined as the ratio of the deterministic power to the
scattered power, i.e., K-factor= |µz|2/σ2.

We assume that the matrix H is a complex Gaussian random matrix and the realization of
H is known to the receiver, or equivalently, the channel output consists of the pair (y,H). Note
that the transmitter does not know the channel and the input power is distributed equally over
all transmitting antennas, which is a natural thing to do in this case. Moreover, if we assume a
block-fading model and coding over many independent fading intervals, then the Shannon or ergodic
capacity of the random MIMO channel [34] is given by

C = EH

{
log det

(
Int + (ρ/nt)H

HH
)}

= EW {log det (Int + (ρ/nt)W)} . (26)

According to Proposition 2, if W ∼ CW nt(nr,Σ,Ω) then the channel is Rician distributed and if
W ∼ CW nt(nr,Σ) then the channel is Rayleigh distributed. The capacities of Rician and Rayleigh
distributed MIMO channels are computed using the complex noncentral and central Wishart densi-
ties given in equations (10) and (11), respectively. The computation of correlated and uncorrelated
Rayleigh channel capacities are studied in [26] and [34], respectively.

Here we evaluate the channel capacity of a Rician channel. In a Rician channel, the distribution
of an nr × nt channel matrix H is given by H ∼ CN(M, Inr ⊗Σ), with nr ≥ nt. Here the covariance
matrix of the rows of H is denoted by Σ, which is an nt × nt Hermitian matrix. Note that the off-
diagonal elements of Σ are nonzero for correlated channels. In other words, the channel coefficients
from different transmitter antennas to a single receiver antenna is correlated (correlated at the
transmitter end). The channel capacity is given by the following theorem.

Theorem 5 Consider a Rician channel, i.e., H ∼ CN(M, Inr ⊗ Σ), with nr ≥ nt. If the input
power is constrained by ρ, then the capacity is given by

C = K1

∫

W>0

log det

[
Int +

ρ

nt
W

]
(detW )nr−nt etr

(−Σ−1W
)

0F1

(
nr; ΩΣ−1W

)
(dW ), (27)

where W = HHH, Ω = Σ−1MHM and

K1 =
etr (−Ω)

CΓnt(nr)(det Σ)nr
.

Proof. The result follows by evaluating the expectation in equation (26) using the complex non-
central Wishart density given in equation (10). �

The following theorem expresses the Rician channel capacity in terms of the eigenvalue density
of a complex noncentral Wishart matrix.

Theorem 6 Consider a Rician channel, i.e., H ∼ CN(M, Inr ⊗ Σ), with nr ≥ nt. If the input
power is constrained by ρ, then using the joint eigenvalue density of the complex noncentral Wishart
matrix W = HHH we can write the capacity as

C =

∫

Λ>0

log

{
nt∏

k=1

[
1 +

ρ

nt
λk

]}
f(Λ)dΛ, (28)

where λ1 > · · · > λnt > 0 are the eigenvalues of W, Λ = diag(λ1, . . . , λnt) and

f(Λ) =
πnt(nt−1)(det Σ)−nr

CΓnt(nt)CΓnt(nr)
etr(−Ω)

nt∏

k=1

λnr−nt
k

nt∏

k<l

(λk − λl)
2

×
∞∑

k,t=0

∑

κ,τ ;φ∈κ.τ

Cκ,τ
φ (−Σ−1,ΩΣ−1)Cκ,τ

φ (Λ,Λ)

k! t! [nr]τ Cφ(Int)
. (29)
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Proof. From equation (26), the capacity C is given by

C = EW

{
log det

(
Int +

ρ

nt
W

)}
= EΛ

{
log

(
nt∏

k=1

[
1 +

ρ

nt
λk

])}
. (30)

The result follows by evaluating equation (30) using the eigenvalue density given in equation (14).
�

The Rician channel capacity formulas given in Theorems 5 and 6 are difficult to compute. This
difficulty motivates us to consider the approximate capacity evaluation, or specifically, finding an
upper bound on the Rician capacity, which is studied next. The following lemma is required in the
sequel.

Lemma 1 Let X be an n ×m (n ≥ m) complex matrix of rank m. Then the following inequality
holds:

0F1(n;XHX) ≤ 0F0

(
XHX/n

)
, (31)

with equality as n→∞.

Proof. Since XHX is an m × m Hermitian positive definite matrix, it is enough to show the
following inequality:

(detXHX)n−m0F1(n;XHX) ≤ (detXHX)n−m0F0

(
XHX/n

)
. (32)

The proof is by contradiction. Suppose, to the contrary, that

(detXHX)n−m0F1(n;XHX) > (detXHX)n−m0F0

(
XHX/n

)
. (33)

The Laplace transform of the left side of (33) is

gL(Z) =

∫

XHX>0

etr(−XHXZ)(detXHX)n−m0F1

(
n;XHX

)
(dXHX)

= CΓm(n)(detZ)−n1F1

(
n;n;Z−1

)

= CΓm(n)(detZ)−n0F0

(
Z−1

)

= CΓm(n)(detZ)−n etr
(
Z−1

)
, (34)

where the second equality in equation (34) follows from the complex counterpart of the real case
given in [24, Theorem 7.3.4]. The Laplace transform of the right side of (33) is

gR(Z) =

∫

XHX>0

etr(−XHXZ)(detXHX)n−m0F0

(
XHX/n

)
(dXHX)

= CΓm(n)(detZ)−n1F0

(
n;Z−1/n

)

= CΓm(n)(detZ)−n det(I − Z−1/n)−n. (35)

Since the left and right sides of (33) are both positive, then inequality (33) implies that

gL(Z) > gR(Z). (36)

Thus, comparing equations (34) and (35), we have

det(I − Z−1/n)−n < etr(Z−1), (37)
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that is, (
m∏

k=1

[
1− ϕk

n

])−n
< exp

(
m∑

k=1

ϕk

)
, (38)

Here we may assume that the eigenvalues of the matrix Z−1 satisfy 1 > ϕ1 > · · · > ϕm > 0 by
taking Z satisfying Z > Z0 > 0, with eigenvalues larger than 1, to ensure convergence of the Laplace
transforms in (34) and (35). Taking the logarithm of both sides of inequality (38), we get

−n
(

m∑

k=1

log
[
1− ϕk

n

])
<

m∑

k=1

ϕk. (39)

But for each k, k = 1, . . . ,m, we have

−n
(
log
[
1− ϕk

n

]
+
ϕk
n

)
= n

([
1− ϕk

n

]
− 1− log

[
1− ϕk

n

])
≥ 0,

since logα ≤ α − 1 with equality if and only if α = 1. This contradicts (39) and proves inequality
(31). Note that, as n→∞, the equality holds. The proof is complete. �

As a numerical example, in Figure 2 we plot the values of both functions 0F1(n;XHX) and

0F0

(
XHX/n

)
vs k (0 ≤ k ≤ 20), where we have chosen m = 2, n = 10 and the eigenvalues of XHX

are 1 and 0.75. It can be seen that the derived inequality is quite tight and the series expansions
are converging quickly.

0 2 4 6 8 10 12 14 16 18 20
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1.180

1.185

0
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F (n; X  X) = 1.19051
H

F
 (

X
  X

/n
) 

 a
nd

  
0

0
H

F
 (

n;
 X

  X
)

1
0

H

0

Figure 2: The functions 0F1(n;XHX) and 0F0

(
XHX/n

)
vs k, where m = 2, n = 10 and the

eigenvalues of XHX are 1 and 0.75.

The joint eigenvalue density of a complex noncentral Wishart matrix can be expressed by a
bounded density function, which is given by the following theorem.
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Theorem 7 Let W ∼ CWm(n,Σ,Ω) with n ≥ m. Then W is an m×m positive definite Hermitian
matrix. The joint density of the eigenvalues, λ1 > · · · > λm > 0, of W satisfies the inequality

f(Λ) ≤ πm(m−1)(det Σ)−n

CΓm(m)CΓm(n)
etr(−Ω)

m∏

k=1

λn−mk

m∏

k<l

(λk − λl)
2
0F

(m)
0 (−Ψ,Λ), (40)

where Λ = diag(λ1, . . . , λm), the diagonal elements of Ψ, ψ1, . . . , ψm, are the eigenvalues of the
matrix (Σ−1 − ΩΣ−1/n), and Ω = Σ−1MHM .

Proof. From Proposition 1 we obtain

f(Λ) =
πm(m−1)

CΓm(m)

m∏

k<l

(λk − λl)
2

∫

U(m)

f(EΛEH)(dE)

=
πm(m−1)(det Σ)−n

CΓm(m)CΓm(n)
etr(−Ω)

m∏

k=1

λn−mk

m∏

k<l

(λk − λl)
2

×
∫

U(m)

etr
(−Σ−1EΛEH

)
0F1

(
n; ΩΣ−1EΛEH

)
(dE)

≤ πm(m−1)(det Σ)−n

CΓm(m)CΓm(n)
etr(−Ω)

m∏

k=1

λn−mk

m∏

k<l

(λk − λl)
2

×
∫

U(m)

etr
(−Σ−1EΛEH

)
0F0

(
ΩΣ−1EΛEH/n

)
(dE) (by Lemma 1)

≤ πm(m−1)(det Σ)−n

CΓm(m)CΓm(n)
etr(−Ω)

m∏

k=1

λn−mk

m∏

k<l

(λk − λl)
2

×
∫

U(m)

etr
(− (Σ−1 − ΩΣ−1/n

)
EΛEH

)
(dE)

≤ πm(m−1)(det Σ)−n

CΓm(m)CΓm(n)
etr(−Ω)

m∏

k=1

λn−mk

m∏

k<l

(λk − λl)
2
0F

(m)
0 (−Ψ,Λ).

The result follows from equation (6). �
Note that the function 0F

(m)
0 (−Ψ,Λ) can be written [21] as

0F
(m)
0 (−Ψ,Λ) =

CΓm(m) det [(exp (−ψiλj))]
πm(m−1)/2

∏m
k<l(λk − λl)

∏m
k<l(ψl − ψk)

. (41)

The following theorem expresses the capacity in terms of the unordered eigenvalue density.

Theorem 8 Consider a Rician channel, i.e., H ∼ CN(M, Inr ⊗ Σ), with nr ≥ nt. If the input
power is constrained by ρ, then using the unordered eigenvalue density we can bound the capacity C
as

C ≤ ntEλ1 [log(1 + (ρ/nt)λ1)] . (42)

Moreover, the density f(λ1) satisfies the inequality

f(λ1) ≤ πnt(nt−1)/2(det Σ)−nr etr(−Ω)

nt!CΓnt(nr)
∏nt

k<l(ψl − ψk)

∫ {∑̃
i
(−1)per(i1,...,int ) exp

(
nt∑
j=1

−λjψij
)}

×
{∑̃

k
(−1)per(k1,...,knt )

nt∏

l=1

λnr−nt+kl
l

}
nt∧

k=2

dλk, (43)
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where
∑̃

i denotes summation over all permutations (i1, . . . , int) of (1, . . . , nt),
∑̃

k denotes summa-
tion over all permutations (k1, . . . , knt) of (0, . . . , nt− 1) and {per(k1, . . . , knt)} is 0 or 1 depending
on the permutation being even or odd. Similarly for {per(i1, . . . , int)}.

Proof. From equation (30), C can be written as

C =
nt∑

k=1

Eλk

[
log

(
1 +

ρ

nt
λk

)]
= ntEλ1

[
log

(
1 +

ρ

nt
λ1

)]
, (44)

where the expectation is with respect to the unordered eigenvalue density f(λ1). The bounded
unordered eigenvalue density (43) is obtained by substituting (41) in (40) and integrating with
respect to λ2, . . . , λnt , i.e.,

f(λ1) ≤ πnt(nt−1)/2(det Σ)−nr etr(−Ω)

nt!CΓnt(nr)
∏nt

k<l(ψl − ψk)

∫
det [(exp (−ψiλj))]

nt∏

k<l

(λk − λl)
nt∏

k=1

λnr−nt
k

nt∧

k=2

dλk (45)

The integrand in equation (45) can be written as

det [(exp (−ψiλj))]
nt∏

k<l

(λk − λl)
nt∏

k=1

λnr−nt
k

= det




e−ψ1λ1 . . . e−ψ1λnt

e−ψ2λ1 . . . e−ψ2λnt

...
...

...
e−ψntλ1 . . . e−ψntλnt


 det




1 . . . 1
λ1 . . . λnt

...
...

...
λnt−1

1 . . . λnt−1
nt




nt∏

k=1

λnr−nt
k

= det



e−ψ1λ1 . . . e−ψ1λnt

...
...

...
e−ψntλ1 . . . e−ψntλnt


 det



λnr−nt

1 . . . λnr−nt
nt

...
...

...
λnr−1

1 . . . λnr−1
nt




=

{∑̃
i
(−1)per(i1,...,int ) exp

(
nt∑
j=1

−ψijλj
)}{∑̃

k
(−1)per(k1,...,knt )

nt∏

l=1

λnr−nt+kl
l

}
.

The result follows. �

5 Computation of the Capacities

In this subsection, we find numerically an upper bound for an nr×2 Rician channel capacity. Thus,
we have a two-input (nt = 2), nr-output communication system operating over a Rician fading
environment (typical satellite communication environment). Let nt = 2 and Ψ = diag(ψ1, ψ2).
Then we have [21]

0F
(2)
0 (−Ψ,Λ) =

1

(ψ2 − ψ1)(λ1 − λ2)

[
e−ψ1λ1−ψ2λ2 − e−ψ1λ2−ψ2λ1

]
. (46)

The following theorem gives an upper bound for the Rician channel capacity for an nr × 2 matrix.
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Theorem 9 Consider a two-input Rician channel, i.e., H ∼ CN(M, Inr ⊗ Σ), with nr ≥ 2. If the
input power is constrained by ρ, then the capacity C satisfies the inequality

C ≤ (det Σ)−nr etr(−Ω)

(ψ2 − ψ1)

[
ψ−nr+1

2

Γ(nr)

∫ ∞

0

log
[
1 +

ρ

2
λ1

]
λnr−1

1 e−ψ1λ1 dλ1

− ψ−nr+1
1

Γ(nr)

∫ ∞

0

log
[
1 +

ρ

2
λ1

]
λnr−1

1 e−ψ2λ1 dλ1

− ψ−nr
2

Γ(nr − 1)

∫ ∞

0

log
[
1 +

ρ

2
λ1

]
λnr−2

1 e−ψ1λ1 dλ1

+
ψ−nr

1

Γ(nr − 1)

∫ ∞

0

log
[
1 +

ρ

2
λ1

]
λnr−2

1 e−ψ2λ1 dλ1

]
, (47)

where λ1 is an unordered eigenvalue of W = HHH, and ψ1 and ψ2 are the eigenvalues of (Σ−1 − ΩΣ−1/nr).

Proof. Using equation (46), the unordered eigenvalue density of W satisfies the inequality

f(λ1, λ2) ≤ (det Σ)−nr etr(−Ω)(λ1λ2)
nr−2(λ1 − λ2)

2(ψ2 − ψ1)Γ(nr)Γ(nr − 1)

[
e−ψ1λ1−ψ2λ2 − e−ψ1λ2−ψ2λ1

]
.

Now, integrating with respect to λ2 and noting that
∫ ∞

0

xa−1e−x/b dx = Γ(a)ba,

we obtain the density of f(λ1). Thus we have

f(λ1) ≤ (det Σ)−nr etr(−Ω)

2(ψ2 − ψ1)

×
{
λnr−1

1 e−ψ1λ1

Γ(nr)ψ
nr−1
2

− λnr−1
1 e−ψ2λ1

Γ(nr)ψ
nr−1
1

− λnr−2
1 e−ψ1λ1

Γ(nr − 1)ψnr
2

+
λnr−2

1 e−ψ2λ1

Γ(nr − 1)ψnr
1

}
.

Finally, evaluating equation (44) with f(λ1) gives inequality (47). �
Figure 3 shows the capacity in nats6 vs SNR for nr = 2 and 4, and nt = 2, where the solid lines

represent the upper bounds given in (47) and the dashed lines represent the simulation results. It
can be seen that the derived capacity upper bound is quite tight with the simulation results for the
entire range of SNRs, and this illustrates the accuracy of the bound.

Table 1 lists the capacity upper bound in nats for an nr× 2 Rician fading channel matrix. Note
that each column represents different levels of input power or signal-to-noise ratio (SNR) in dB.
Figure 4 shows the capacity (upper bound) in nats vs nr for different levels of input power. From the
table and figures we note that the capacity is increasing with increasing nr and SNR. Moreover, the
Rician channel capacity is increasing compared to an uncorrelated Rayleigh channel capacity, see
[26, Table 2]. Note that here we have assumed an uncorrelated Rician channel H ∼ CN(M, Inr⊗Σ),
where the covariance matrix and the mean matrix are

Σ =

[
1 0
0 1

]
and M =

[
0.2 + 0.2i 0.2 + 0.2i
0.2 + 0.2i 0.2 + 0.2i

]
,

respectively.

6In equation (47), if we use loge then the capacity is measured in nats. If we use log2 then the capacity is measured
in bits. Thus, one nat is equal to 1/ loge 2 bits/sec/Hz (e = 2.718 . . .).
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Table 1: The capacity upper bound in nats for a two-input, nr-output communication system
operating over a Rician fading channel, where ρ is signal-to-noise ratio in dB.

ρ in dB

nr 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB

2 1.2739 2.4644 4.0886 6.0327 8.1639 10.3803 12.6284 14.8873

4 2.2125 3.9525 6.0789 8.3996 10.7980 13.2235 15.6580 18.0953

6 2.9542 4.9766 7.2964 9.7406 12.2289 14.7317 17.2392 19.7482

8 3.5817 5.7894 8.2351 10.7721 13.3401 15.9181 18.4994 21.0817

10 4.1389 6.4900 9.0396 11.6620 14.3086 16.9629 19.6198 22.2774

12 4.6512 7.1248 9.7699 12.4758 15.2018 17.9342 20.6686 23.4037

14 5.1338 7.7191 10.4560 13.2457 16.0527 18.8652 21.6794 24.4942

16 5.5967 8.2878 11.1155 13.9901 16.8800 19.7748 22.6711 25.5679

18 6.0470 8.8406 11.7593 14.7206 17.6955 20.6749 23.6557 26.6369

20 6.4895 9.3843 12.3950 15.4448 18.5071 21.5735 24.6411 27.7092

0 5 10 15 20 25
0

2

4

6

8

10

12

14

C
ap

ac
ity

 (
in

 n
at

s)

Signal to noise ratio (in dB)

n  = 4r

n  = 2r

Figure 3: Capacity vs SNR for nt = 2 and nr = 2 and 4, i.e., H is an nr × 2 Rician fading channel
matrix. The solid lines represent the upper bounds given in (47) and the dashed lines represent the
simulation results.
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Figure 4: Capacity upper bound vs number of outputs for SNR= 0, 5, 10, 15, 20, 25, 30, 35 dB. Note
that H is an nr × 2 Rician fading channel matrix.

Next, we consider the spatial correlation effects; hence, in this case, the covariance matrix is

Σ =

[
1 %
% 1

]
.

Note also that the off-diagonal element of Σ gives the correlation between the channel coefficient
from different transmitter antennas to a single receiver antenna, i.e.,

E{hijh∗kl} =

{
% i 6= k = 1, 2, j = l = 1, . . . , nr,
0 otherwise.

This off-diagonal element is called the channel correlation coefficient or correlation coefficient. Fig-
ure 5 shows the capacity upper bound in nats vs SNR for the correlation coefficient % = 0.99 and
nt = nr = 2. Note that Cu and Cc denote the capacity of uncorrelated and spatially correlated (at
the transmitter end) channels, respectively. It is clear from Figure 5 that the capacity is degraded
by 33% due to correlation compared to the uncorrelated case at SNR = 15dB. Figure 6 shows
the capacity upper bound in nats vs the correlation coefficient for SNR = 25dB and nt = 2 and
nr = 2, 4. From these figures we note the following: (i) the capacity is decreasing with increasing
channel correlation, and (ii) the capacity is increasing with increasing nr and SNR.

6 Conclusion

In this paper, the densities of the largest, smallest and joint eigenvalues of a complex noncentral
Wishart matrix are derived for an arbitrary mean and covariance matrix. These densities play an
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Figure 5: Capacity upper bound vs SNR for correlation coefficient % = 0.99, nt = 2, and nr = 2,
i.e., H is a 2× 2 correlated Rician fading channel matrix. Note that Cu and Cc denote the capacity
of uncorrelated and spatially correlated (at the transmitter end) channels, respectively.

important role in information theory, numerical analysis and statistical hypothesis testing. We show
that the joint eigenvalue density of a complex noncentral Wishart matrix can be expressed by a
easily computable bounded density function. Furthermore, A single unordered eigenvalue density
of complex noncentral Wishart matrix also derived. Using these densities the most important
information-theoretic measure, the so-called ergodic channel capacity formulas for MIMO Rician
channel are derived. Specifically, the exact and easily computable tight upper bound formulas for
ergodic capacity is given for both spatially correlated and uncorrelated MIMO Rician channels.
Numerical results are also given, which show how the channel correlation degrades the capacity of
the communication system. For example at SNR = 15dB and correlation coefficient % = 0.99, the
capacity of 2×2 Rician channel is degraded by 33% due to correlation compared to the uncorrelated
case, see Figure 5.
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