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Quantum computing and information extraction for a dynamical quantum system
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We discuss the simulation of a complex dynamical system, the so-called quantum sawtooth map
model, on a quantum computer. We show that a quantum computer can be used to efficiently extract
relevant physical information for this model. It is possible to simulate the dynamical localization
of classical chaos and extract the localization length of the system with quadratic speed up with
respect to any known classical computation. We can also compute with algebraic speed up the
diffusion coefficient and the diffusion exponent both in the regimes of Brownian and anomalous
diffusion. Finally, we show that it is possible to extract the fidelity of the quantum motion, which
measures the stability of the system under perturbations, with exponential speed up.

PACS numbers: 03.67.Lx, 05.45.Mt

I. INTRODUCTION

One of the main applications of computers is the simulation of dynamical models describing the evolution of complex
systems. From the viewpoint of quantum computation, quantum mechanical systems play a special role. Indeed, the
simulation of quantum many-body problems on a classical computer is a difficult task as the size of the Hilbert space
grows exponentially with the number of particles. For instance, if we wish to simulate a chain of n spin- 12 particles, the
size of the Hilbert space is 2n. Namely, the state of this system is determined by 2n complex numbers. As observed
by Feynman in the 1980’s [1], the growth in memory requirement is only linear on a quantum computer, which is
itself a many-body quantum system. For example, to simulate n spin- 12 particles we only need n qubits. Therefore,
a quantum computer operating with only a few tens of qubits could outperform a classical computer. More recently,
a few quantum efficient algorithms have been developed for various quantum systems, ranging from some many-body
problems [2, 3] to single-particle models of quantum chaos [4, 5, 6].
Any quantum algorithm has to address the problem of efficiently extracting useful information from the quantum

computer wave function. The result of the simulation of a quantum system is the wave function of this system,
encoded in the n qubits of the quantum computer. The problem is that, in order to measure all N = 2n wave function
coefficients by means of standard polarization measurements of the n qubits, one has to repeat the quantum simulation
a number of times exponential in the number of qubits. This procedure would spoil any quantum algorithm, even
in the case in which such algorithm could compute the wave function with an exponential gain with respect to any
classical computation. Nevertheless, there are some important physical questions that can be answered in an efficient
way, and we will discuss a few examples in this paper.
We will discuss a quantum algorithm which efficiently simulates the quantum sawtooth map, a physical model

with rich and complex dynamics [6]. This system is characterized by very different dynamical regimes, ranging
from integrability to chaos, and from normal to anomalous diffusion; it also exhibits the phenomenon of dynamical
localization of classical chaotic diffusion. We will show that some important physical quantities can be extracted
efficiently by means of a quantum computer:
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(i) the localization length of the system, which can be extracted with a quadratic speed up with respect to any
known classical computation [7];
(ii) the diffusion coefficient and the diffusion exponent, both in the regimes of normal (Brownian) and anomalous

diffusion; in this case we obtain an algebraic speed up;
(iii) the fidelity of quantum motion, which characterizes the stability of the system under perturbations; for this

quantity we achieve an exponential speed up.
The paper is organized as follows: the properties of the sawtooth map model are discussed in Sec. II; our quantum

algorithm simulating the quantum dynamics of this model in Sec. III; the quantum computation of the localized regime
and the extraction of the localization length in Sec. IV; the quantum simulation of the phenomena of normal and
anomalous diffusion and the computation of the diffusion coefficient and diffusion exponent in Sec. V; the quantum
computation of the fidelity of quantum motion in Sec. VI; our conclusions are summarized in Sec. VII.

II. THE SAWTOOTH MAP

The sawtooth map is a prototype model in the studies of classical and quantum-dynamical systems and exhibits a
rich variety of interesting physical phenomena, from complete chaos to complete integrability, normal and anomalous
diffusion, dynamical localization, and cantori localization. Furthermore, the sawtooth map gives a good approximation
to the motion of a particle bouncing inside a stadium billiard (which is a well-known model of classical and quantum
chaos).
The sawtooth map belongs to the class of periodically driven dynamical systems, governed by the Hamiltonian

H(θ, I; τ) =
I2

2
+ V (θ)

+∞
∑

j=−∞

δ(τ − jT ) , (1)

where (I, θ) are conjugate action-angle variables (0 ≤ θ < 2π). This Hamiltonian is the sum of two terms, H(θ, I; τ) =
H0(I) + U(θ; t), where H0(I) = I2/2 is just the kinetic energy of a free rotator (a particle moving on a circle
parametrized by the coordinate θ), while

U(θ; t) = V (θ)
∑

j

δ(τ − jT ) (2)

represents a force acting on the particle that is switched on and off instantaneously at time intervals T . Therefore, we
say that the dynamics described by Hamiltonian (1) is kicked. The corresponding Hamiltonian equations of motion
are















İ = −∂H
∂θ

= −dV (θ)

dθ

+∞
∑

j=−∞

δ(τ − jT ) ,

θ̇ =
∂H

∂I
= I .

(3)

These equations can be easily integrated and one finds that the evolution from time lT− (prior to the l-th kick) to
time (l + 1)T− (prior to the (l + 1)-th kick) is described by the map

{

Ī = I + F (θ) ,

θ̄ = θ + T Ī ,
(4)

where F (θ) = −dV (θ)/dθ is the force acting on the particle.
In the following, we will consider the special case V (θ) = −k(θ− π)2/2. This map is called the sawtooth map, since

the force F (θ) = −dV (θ)/dθ = k(θ−π) has a sawtooth shape, with a discontinuity at θ = 0. By rescaling I → J = TI,
the classical dynamics is seen to depend only on the parameter K = kT . Indeed, in terms of the variables (J, θ) map
(4) becomes

{

J̄ = J +K(θ − π) ,

θ̄ = θ + J̄ .
(5)
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The sawtooth map exhibits sensitive dependence on initial conditions, which is the distinctive feature of classical chaos:
any small error is amplified exponentially in time. In other words, two nearby trajectories separate exponentially,
with a rate given by the maximum Lyapunov exponent λ, defined as

λ = lim
|t|→∞

1

t
ln

(

δ(t)

δ(0)

)

, (6)

where the discrete time t = τ/T measures the number of map iterations and δ(t) =
√

[δJ(t)]2 + [δθ(t)]2. To compute
δJ(t) and δθ(t), we differentiate map (5), obtaining

[

δJ̄
δθ̄

]

=M

[

δJ
δθ

]

=

[

1 K
1 1 +K

] [

δJ
δθ

]

. (7)

The iteration of map (7) gives δJ(t) and δθ(t) as a function of δJ(0) and δθ(0) [δJ(0) and δθ(0) represent a change

of the initial conditions]. The stability matrix M has eigenvalues µ± = 1
2 (2 +K ±

√
K2 + 4K), which do not depend

on the coordinates J and θ and are complex conjugate for −4 ≤ K ≤ 0 and real for K < −4 and K > 0. Thus, the
classical motion is stable for −4 ≤ K ≤ 0 and completely chaotic for K < −4 and K > 0. For K > 0, δ(t) ∝ (µ+)

t

asymptotycally in t, and therefore the maximum Lyapunov exponent is λ = lnµ+. Similarly, we obtain λ = ln |µ−|
for K < −4. In the stable region −4 ≤ K ≤ 0, λ = 0.
The sawtooth map can be studied on the cylinder [J ∈ (−∞,+∞)], or on a torus of sinite size (−πL ≤ J < πL,

where L is an integer, to assure that no discontinuities are introduced in the second equation of (5) when J is taken
modulus 2πL). Although the sawtooth map is a deterministic system, for K > 0 and K < −4 the motion of a
trajectory along the momentum direction is in practice indistinguishable from a random walk. Thus, one has normal
diffusion in the action (momentum) variable and the evolution of the distribution function f(J, t) is governed by a
Fokker–Planck equation:

∂f

∂t
=

∂

∂J

(

1

2
D
∂f

∂J

)

. (8)

The diffusion coefficient D is defined by

D = lim
t→∞

〈(∆J(t))2〉
t

, (9)

where ∆J ≡ J − 〈J〉, and 〈. . . 〉 denotes the average over an ensemble of trajectories. If at time t = 0 we take a phase
space distribution with initial momentum J0 and random phases 0 ≤ θ < 2π, then the solution of the Fokker–Planck
equation (8) is given by

f(J, t) =
1√

2πDt
exp

[

− (J − J0)
2

2Dt

]

. (10)

The width
√

〈(∆J(t))2〉 of this Gaussian distribution grows in time, according to

〈(∆J(t))2〉 ≈ D(K) t . (11)

For K > 1, the diffusion coefficient is well approximated by the random phase approximation, in which we assume
that there are no correlations between the angles (phases) θ at different times. Hence, we have

D(K) ≈ 〈(∆J1)2〉 =
1

2π

∫ 2π

0

dθ (∆J1)
2 =

1

2π

∫ 2π

0

dθK2(θ − π)2 =
π2

3
K2 , (12)

where ∆J1 = J̄ − J is the change in action after a single map step. For 0 < K < 1 diffusion is slowed, due to the
sticking of trajectories close to broken tori (known as cantori), and we have D(K) ≈ 3.3K5/2 (this regime is discussed
in [8]). For −4 < K < 0 the motion is stable, the phase space has a complex structure of elliptic islands down to
smaller and smaller scales, and one can observe anomalous diffusion, that is, 〈(∆J)2〉 ∝ tα, with α 6= 1 (for instance,
α = 0.57 when K = −0.1, see Fig. 4 below). The cases K = −1,−2,−3 are integrable.

The quantum version of the sawtooth map is obtained by means of the usual quantization rules, θ → θ̂ and
I → Î = −i∂/∂θ (we set ~ = 1). The quantum evolution in one map iteration is described by a unitary operator Û ,
called the Floquet operator, acting on the wave function ψ:

ψ̄ = Û ψ = exp

[

−i
∫ (l+1)T−

lT−

dτH(θ̂, Î; τ)

]

ψ , (13)
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where H is Hamiltonian (1). Since the potential V (θ) is switched on only at discrete times lT , it is straightforward
to obtain

ψ̄ = e−iT Î2/2 e−iV (θ̂) ψ = e−iT Î2/2 eik(θ̂−π1̂1)2/2 ψ , (14)

where 1̂1 denotes the identity operator. It is important to emphasize that, while the classical sawtooth map depends
only on the rescaled parameter K = kT , the corresponding quantum evolution (14) depends on k and T separately.

The effective Planck constant is given by ~eff = T . Indeed, if we consider the operator Ĵ = T Î (Ĵ is the quantization
of the classical rescaled action J), we have

[θ̂, Ĵ ] = T [θ̂, Î] = iT = i~eff. (15)

The classical limit ~eff → 0 is obtained by taking k → ∞ and T → 0, while keeping K = kT constant.

III. QUANTUM COMPUTING OF THE QUANTUM SAWTOOTH MAP

In the following, we describe an exponentially efficient quantum algorithm for simulation of the map (14) [6]. It is
based on the forward/backward quantum Fourier transform between momentum and angle bases. Such an approach

is convenient since the operator Û , introduced in Eq. (13), is the product of two operators, Ûk = eik(θ̂−π1̂1)2/2 and

ÛT = e−iT Î2/2, diagonal in the θ and I representations, respectively. This quantum algorithm requires the following
steps for one map iteration:

1. We apply Ûk to the wave function ψ(θ). In order to decompose the operator Ûk into one- and two-qubit gates,
we first of all write θ in binary notation:

θ = 2π

n
∑

j=1

αj2
−j , (16)

with αi ∈ {0, 1}. Here n is the number of qubits, so that the total number of levels in the quantum sawtooth
map is N = 2n. From this expansion, we obtain

(θ − π)2 = 4π2
n
∑

j1,j2=1

(

αj1

2j1
− 1

2n

)(

αj2

2j2
− 1

2n

)

, (17)

that is

(θ̂ − π1̂1)2 = 4π2
n
∑

j1,j2=1

1̂11 ⊗ · · · ⊗ 1̂1j1−1 ⊗ Ôj1 ⊗ 1̂1j1+1 ⊗ · · · ⊗ 1̂1j2−1 ⊗ Ôj2 ⊗ 1̂1j2+1 ⊗ · · · ⊗ 1̂1jn , (18)

where 1̂1j is the identity operator for the qubit j and the one-qubit operators Ôj1 and Ôj2 act on qubits j1 and
j2, respectively. We have

Ôj =
1

2j
1̂1j − (σ̂z)j

2
− 1

2n
1̂1j , (19)

where (σ̂z)j denotes the Pauli operator σ̂z for the qubit j. Note that the operator Ôj is diagonal in the

computational basis {|0〉, |1〉}. We can insert (18) into the unitary operator Ûk, obtaining the decomposition

eik(θ̂−π1̂1)2/2 =

n
∏

j1,j2=1

exp
[

i2π2k
(

1̂11 ⊗ · · · ⊗ 1̂1j1−1 ⊗ Ôj1 ⊗ 1̂1j1+1 ⊗ · · · ⊗ 1̂1j2−1 ⊗ Ôj2 ⊗ 1̂1j2+1 ⊗ · · · ⊗ 1̂1jn

)]

,

(20)
which is the product of n2 two-qubit gates (controlled phase-shift gates), each acting non-trivially only on the
qubits j1 and j2. In the computational basis {|αj1αj2〉 = |00〉, |01〉, |10〉, |11〉} each two-qubit gate can be written
as exp(i2π2kDj1,j2), where Dj1,j2 is a diagonal matrix:

Dj1,j2 =









1
4n2 0 0 0
0 − 1

2n

(

1
2j2

− 1
2n

)

0 0
0 0 − 1

2n

(

1
2j1

− 1
2n

)

0
0 0 0

(

1
2j1

− 1
2n

)(

1
2j2

− 1
2n

)









. (21)

Note that decomposition (20) of Ûk is specific to the sawtooth map.
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2. The change from the θ to the I representation is obtained by means of the quantum Fourier transform, which
requires n Hadamard gates and 1

2n(n− 1) controlled phase-shift gates (see, e.g., [9]).

3. In the I representation, the operator ÛT has essentially the same form as the operator Ûk in the θ representation,
and therefore it can be decomposed into n2 controlled phase-shift gates, similarly to Eq. (20).

4. We return to the initial θ representation by application of the inverse quantum Fourier transform.

Thus, overall, this quantum algorithm requires 3n2 + n gates per map iteration (3n2 − n controlled phase-shifts and
2n Hadamard gates). This number is to be compared with the O(n2n) operations required by a classical computer
to simulate one map iteration by means of a fast Fourier transform. Thus, the quantum simulation of the quantum
sawtooth map dynamics is exponentially faster than any known classical algorithm. Note that the resources required
to the quantum computer to simulate the evolution of the sawtooth map are only logarithmic in the system size N .
Of course, there remains the problem of extracting useful information from the quantum-computer wave function.
This will be discussed in the subsequent sections.

IV. QUANTUM COMPUTING OF DYNAMICAL LOCALIZATION

Dynamical localization is one of the most interesting phenomena that characterize the quantum behavior of classi-
cally chaotic systems: quantum interference effects suppress chaotic diffusion in momentum, leading to exponentially
localized wave functions. This phenomenon was first found and studied in the quantum kicked-rotator model [10] and
has profound analogies with Anderson localization of electronic transport in disordered materials [11]. Dynamical
localization has been observed experimentally in the microwave ionization of Rydberg atoms [12] and in experiments
with cold atoms [13].
Dynamical localization can be studied in the sawtooth map model. In this case, map (14) is studied on the cylinder

[I ∈ (−∞,+∞)], which is cut-off at a finite number N of levels due to the finite quantum (or classical) computer
memory. Similarly to other models of quantum chaos, quantum interference in the sawtooth map leads to suppression
of classical chaotic diffusion after a break time t⋆. For t > t⋆, while the classical distribution goes on diffusing, the
quantum distribution reaches a steady state which decays exponentially over the momentum eigenbasis:

Wm ≡
∣

∣〈m|ψ〉
∣

∣

2 ≈ 1

ℓ
exp

[

−2|m−m0|
ℓ

]

, (22)

with m0 the initial value of the momentum (the index m singles out the eigenstates of Î, that is, Î|m〉 = m|m〉) [15].
Therefore, for t > t⋆ only

√

〈(∆m)2〉 ∼ ℓ levels are populated.
An estimate of t⋆ and ℓ can be obtained by means of the following argument [16]. The localized wave packet has

significant projection over about ℓ basis states, both in the basis of the momentum eigenstates and in the basis of the
eigenstates of the Floquet operator Û defined by Eq. (13). This operator is unitary and therefore its eigenvalues can
be written as exp(iλi), and the so-called quasienenergies λi are in the interval [0, 2π[. Thus, the mean level spacing
between “significant” quasienergy eigenstates is ∆E ≈ 2π/ℓ. The Heisenberg principle tells us that the minimum
time required to the dynamics to resolve this energy spacing is given by

t⋆ ≈ 1/∆E ≈ ℓ. (23)

This is the break time after which the quantum feature of the dynamics reveals. Diffusion up to time t⋆ involves a
number of levels given by

√

〈(∆m)2〉 ≈
√

Dmt⋆ ≈ ℓ, (24)

where Dm = D/T 2 is the classical diffusion coefficient, measured in number of levels. The relations (23) and (24)
imply

t⋆ ≈ ℓ ≈ Dm. (25)

Therefore, the quantum localization length ℓ for the average probability distribution is approximately equal to the
classical diffusion coefficient. For the sawtooth map,

ℓ ≈ Dm ≈ (π2/3)k2 . (26)

Note that the quantum localization can take place on a finite system only if ℓ is smaller than the system size N .
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FIG. 1: The probability distribution over the momentum basis for the sawtooth map with n = 6 qubits, k =
√
3, K =

√
2,

and initial momentum m0 = 0; the time average is taken in the intervals 10 ≤ t ≤ 20 (full curve) and 290 ≤ t ≤ 300 (dashed
curve). The straight line fit, Wm ∝ exp(−2|m|/ℓ), gives a localization length ℓ ≈ 12. Note that the logarithm is base ten.

In Fig. 1 (taken from [7]), we show that exponential localization can already be clearly seen with n = 6 qubits. It is
important to stress that in a quantum computer the memory capabilities grow exponentially with the number of qubits
(the number of levels N is equal to 2n). Therefore, already with less than 40 qubits, one could make simulations
inaccessible to today’s supercomputers. Fig. 1 shows that the exponentially localized distribution, appearing at
t ≈ t⋆, is frozen in time, apart from quantum fluctuations, which we partially smooth out by averaging over a few
map steps. The freezing of the localized distribution can be seen from comparison of the probability distributions
taken immediately after t⋆ (the full curve in Fig. 1) and at a much larger time t = 300 ≈ 25t⋆ (the dashed curve
in the same figure). Here the localization length is ℓ ≈ 12, and classical diffusion is suppressed after a break time
t⋆ ≈ ℓ ≈ Dm, in agreement with estimates (25)–(26) [the classical diffusion coefficient is Dm ≈ (π2/3)k2 ≈ 9.9]. This
quantum computation up to times of the order of ℓ requires a number Ng ≈ 3n2ℓ ∼ 103 of one- or two-qubit quantum
gates.
In Fig. 2, we show a quantum computation that might be performed already with a three-qubit quantum processor.

It is possible to compare two very different regimes, namely the localized and the ergodic regime, by varying only the
value of the quantum parameter k, while keeping the classical parameter K constant. In both cases the wave function
is stationary (apart from quantum fluctuations), as can be seen from the comparison of the wave function patterns at
different times. The difference between the two cases is striking. Notice that, in this example, the localization length
ℓ < 1 and one can explain the results of this simulation using perturbation theory. Indeed, we have k ∼ 0.35 < 1, and
therefore we can treat the kick Ûk as a perturbation of the free-evolution operatore ÛT . The case shown in Fig. 2 is
interesting since it involves only n = 3 qubits and a few tens on quantum gates. Therefore this quantum computation
seems to be accessible or close to the present capabilities of NMR-based [17, 18] and ion-trap [19] quantum processors.
We now discuss how to extract the relevant information (the value of the localization length) from a quantum

computer simulating the sawtooth-map dynamics. The localization length can be measured by running the algorithm
repeatedly up to time t > t⋆. Each run is followed by a standard projective measurement on the computational
(momentum) basis. Since the wave function at time t can be written as

|ψ(t)〉 =
∑

m

ψ̂(m, t) |m〉 , (27)

with |m〉 momentum eigenstates, such a measurement gives outcome m̄ with probability

Wm̄ =
∣

∣〈m̄|ψ(t)〉
∣

∣

2
=

∣

∣ψ̂(m̄, t)
∣

∣

2
. (28)

A first series of measurements would allow us to give a rough estimate of the variance 〈(∆m)2〉 of the distribution

Wm. In turn,
√

〈(∆m)2〉 gives a first estimate of the localization length ℓ. After this, we can store the results of the
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FIG. 2: The probability distribution over the momentum basis for the sawtooth map with n = 3 qubits, k = K/T = KN/2πL,
and initial momentum m0 = 0: ergodic regime at L = 1 (full symbols) and localized regime at L = 5 (empty symbols). Circles
(squares) represent the wave function after t = 3 (t = 50) time steps. The dashed line represents an equally weighted wave
function. To smooth the results, we average over ten (one hundred) different values of K ∈ [1.4, 1.5] for the localized (ergodic)
case.

measurements in histogram bins of width δm ∝ ℓ ≈
√

〈(∆m)2〉. Finally, the localization length is extracted from a fit
of the exponential decay of this coarse-grained distribution over the momentum basis. Elementary statistical theory
tells us that, in this way, the localization length can be obtained with accuracy ν after the order of 1/ν2 computer
runs. It is interesting to note that it is sufficient to perform a coarse-grained measurement to generate a coarse-
grained distribution. This means that it will be sufficient to measure the most significant qubits, and ignore those
that would give a measurement accuracy below the coarse graining δm. Thus, the number of runs and measurements
is independent of ℓ.
In Fig. 3, we report a simulation of the measurement process. In the left figure we compare the exact probabilities

given by the wave function with the result of a complete measurement of all qubits and the result of a coarse-grained
measurement. The histograms are built from the same number of computational runs, each followed by a projective
measurement. The coarse-grained measurement does not resolve the thinnest structures of the exact wave function.
However, it is still possible to extract a good estimate of the localization length ℓ from a fit of the exponential
decay of the probability distribution Wm. In the right figure we compare the localization lengths, extracted from the
complete and the coarse-grained measurements, as a function of the number NM of projective measurements. Two
distinct behaviors are clearly distinguishable: the localization length computed from the complete measurement of all
qubits converges slowly to the exact value for the localization length, since a large number of projective measurement
is required in order to resolve the exponentially decaying tails. On the contrary, the coarse-grained measurements
approaches the exact value after a much smaller number of measurements, even though the fluctuations as a function
of the number of measurements are quite large.
It is possible to give a better estimate of the localization length by computing the inverse participation ratio

ξ =
1

∑

mW 2
m

. (29)

The inverse participation ratio determines the number of basis states significantly populated by the wave function
and gives an estimate of the localization length of the system. We have 1 ≤ ξ ≤ N , with the limiting cases ξ = 1
and ξ = N corresponding to a wave function delta-peaked (Wm = δm,m0

) or uniformly spread (Wm = 1/N). In
the localized regime, ξ ≈ ℓ/2. We stress that the inverse participation ratio is almost insensitive to the behavior
of exponentially small tails of the wave function. Thus, the estimate ℓ ≈ 2ξ is quite accurate already with a small
number of coarse-grained mesurement (see Fig. 3).
We now come to the crucial point, of estimating the gain of quantum computation of the localization length with

respect to classical computation. First of all, we recall that it is necessary to make about t⋆ = O(ℓ) map iterations to
obtain the localized distribution, see Eq. (25). This is true, both for the present quantum algorithm and for classical
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FIG. 3: Left: Simulation of a measurement experiment for the quantum sawtooth map at n = 6, K =
√
2, T = 2πL/N , L = 10,

t = 50. The thick line is the exact wave function, the thin dashed (thick full) histogram represents the result of NM runs,
each followed by a projective measurement of all (all except two) qubits. In both cases NM = 5× 103. Right: The estimated
localization length ℓ as a function of the number NM of projective measurements. We estimate ℓ by fitting the probability
decay for the complete (circles) and coarse-grained (squares) measurements. Triangles give 2ξ, with the inverse partecipation
ratio computed from the coarse-grained probability distribution. The straight line is the theoretical result ℓ ∼ 6.8, obtained
from Eq. (26).

computation. It is reasonable to use a basis size N = O(ℓ) to detect localization (say, N equal to a few times the
localization length). In such a situation, a classical computer requires O(ℓ2 log ℓ) operations to extract the localization
length, while a quantum computer would require O(ℓ(log ℓ)2) elementary gates. Indeed, both classical and quantum
computers need to perform t ≈ t⋆ = O(ℓ) = O(N) map iterations. Therefore, the quantum computer provides a
quadratic speed up in computing the localization length, As we shall see in Sec. VI, the quantum computation can
provide an exponential gain (with respect to any known classical computation) in problems that require the simulation
of dynamics up to a time t which is independent of the number of qubits. In this case, provided that we can extract
the relevant information in a number of measurements polynomial in the number of qubits, one should compare
O(t(logN)2) elementary gates (quantum computation) with O(tN logN) elementary gates (classical computation).

V. QUANTUM COMPUTING OF BROWNIAN AND ANOMALOUS DIFFUSION

As we have discussed in Sec. II, the classical sawtooth map is characterized by different diffusive behaviors in the
chaotic and semi-integrable regimes. Quantum computers could help us to study these different regimes by simulating
the map in the deep semiclassical region ~eff → 0. Let us first show that a quantum computer would be useful
in computing the Brownian diffusion coefficient Dm. For this purpose, we can repeat several times the quantum
simulation of the sawtooth map up to a given time t, ending each run with a standard projective measurement
in the momentum basis. This allows us to compute, up to statistical errors, 〈(∆m)2〉. The diffusion coefficient is
then obtained from Eq. (24) as Dm ≈ 〈(∆m)2〉/t. Therefore a computation of the diffusion coefficient up to time
t significantly involves the order of

√
Dmt momentum eigenstates (other levels are only weakly populated for times

smaller than t and can be neglected). Thus, a basis of dimension N = O(t1/2) is sufficient for this computation. To
estimate the speed up of quantum computation, one should compare O(t(logN)2) = O(N2(logN)2) elementary gates
(quantum computation) with with O(tN logN) = O(N3 log(N)) elementary gates (classical computation). This gives
an algebraic speed up.
We note that similar computations could be done in the regime of anomalous diffusion, in which 〈(∆J)2〉 =

T 2〈(∆m)2〉 ∝ tα, to evaluate the exponent α, a quantity of great physical interest. Such a regime is quite complex
in the sawtooth map: Fig. 4 shows, for the classical map, the dependence of the exponent α as a function of K. As
can be seen from this figure, the map explores subdiffusive (α < 1) and superdiffusive (α > 1) regions, up to ballistic
diffusion (α = 2). As required by the principle of quantum to classical correspondence, the quantum sawtooth map
follows this behavior in the deep semiclassical regime ~eff ≪ 1, up to some time scale which diverges when ~eff → 0.
It is important to point out that ~eff drops to zero exponentially with the number of qubits (~eff ∝ 1/N = 1/2n),
and therefore the deep semiclassical region can be reached with a small number of qubits. For large ~eff, one can
also study how diffusion is modified by important quantum phenomena, like quantum tunneling, localization, and
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FIG. 4: Left: Exponent α of the anomalous diffusion (〈(∆J)2〉 ∝ tα) as a function of K for the classical sawtooth map in the
semi-integrable regime.

quantum resonances.
A quantum computer could help us in obtaining the exponent α of the anomalous diffusion. In this case,

since 〈(∆m)2〉 ∝ tα, a rough estimate of the size of the basis required for the computation up to time t is
N = O(tα/2). Hence, we must compare O(t(logN)2) = O(N2/α(logN)2) elementary gates (quantum computation)
with O(tN logN) = O(N (α+2)/α log(N)) elementary gates (classical computation). The speed up is again algebraic.

VI. QUANTUM COMPUTING OF THE FIDELITY OF QUANTUM MOTION

The simulation of quantum dynamics up to a time t which is independent of the number of qubits is useful, for
instance, to measure dynamical correlation functions of the form

C(t) ≡ 〈ψ| Â†(t) B̂(0) |ψ〉 = 〈ψ| (Û †)t Â†(0) Û t B̂(0) |ψ〉 , (30)

where Û is the time-evolution operator (13) for the sawtooth map. Similarly, we can efficiently compute the fidelity of
quantum motion, which is a quantity of central interest in the study of the stability of a system under perturbations
(see, e.g., [20, 21, 22, 23, 24, 25, 26, 27] and references therein). The fidelity f(t) (also called the Loschmidt echo),
measures the accuracy with which a quantum state can be recovered by inverting, at time t, the dynamics with a
perturbed Hamiltonian. It is defined as

f(t) = 〈ψ| (Û †
ǫ )

t Û t |ψ〉 . (31)

Here the wave vector |ψ〉 evolves forward in time with the Hamiltonian H of Eq. (13) up to time t, and then evolves

backward in time with a perturbed Hamiltonian Hǫ (Ûǫ is the corresponding time-evolution operator). For instance,
we can perturb the parameter k in the sawtooth map as follows: k → k′ = k + ǫ, with ǫ ≪ k. If the evolution
operators Û and Ûǫ can be simulated efficiently on a quantum computer, as is the case in most physically interesting
situations, then the fidelity of quantum motion can be evaluated with exponential speed up with respect to known
classical computations. The same conclusion is valid for the correlation functions (30).
The fidelity can be efficiently evaluated on a quantum computer, with the only requirement of an ancilla qubit, using

the scattering circuit drawn in Fig. 5 [28, 29]. This circuit has various important applications in quantum computing,
including quantum state tomography and quantum spectroscopy [29]. The circuit ends up with the measurement of
the ancilla qubit, and we have

〈σz〉 = Re[Tr(Ŵρ)], 〈σy〉 = Im[Tr(Ŵ ρ)], (32)

where 〈σz〉 and 〈σy〉 are the expectation values of the Pauli spin operators σ̂z and σ̂y for the ancilla qubit, and Ŵ is
a unitary operator. These two expectation values can be obtained (up to statistical errors) if one runs several times
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FIG. 5: Scattering circuit. The top line denotes the ancilla qubit, the bottom line a set of n qubits, H the Hadamard gate,
and W a unitary transformation.

the scattering circuit. If we set ρ = |ψ〉〈ψ| and Ŵ = (Û †
ǫ )

t Û t, it is easy to see that f(t) = |Tr(Ŵρ)|2 = 〈σz〉2 + 〈σy〉2.
For this reason, provided the quantum algorithm which implements Û is efficient, as it is the case for the quantum
sawtooth map, the fidelity can be efficiently computed by means of the circuit described in Fig. 5. We note that
another possible way to efficiently measure the fidelity has been proposed in [26].

VII. CONCLUSIONS

In this paper, we have discussed relevant physical examples of efficient information extraction in the quantum
computation of a dynamical system. We have shown that a quantum computer with a small number of qubits can
efficiently simulate the quantum localization effects, simulate both the Brownian and anomalous diffusion in the
deep semiclassical regime, and compute the fidelity of quantum motion. We would like to stress that the simulation
of complex dynamical systems is accessible to the first generation of quantum computers with less than 10 qubits.
Therefore, we believe that quantum algorithms for dynamical systems deserve further studies, since they are the ideal
software for the first quantum processors. Furthermore, we emphasize that the quantum computation of quantities
like dynamical localization or fidelity is a demanding testing ground for quantum computers. In the first case, we
want to simulate dynamical localization, a purely quantum phenomena which is quite fragile in the presence of noise
[30, 31]; in the latter case, fidelity is computed as a result of a sophisticated many-qubit Ramsey-type interference
experiment. Therefore the computation of these quantities appears to be a relevant test for quantum processors
operating in the presence of decoherence and imperfection effects.
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the matrix elements of the evolution operator Û [defined by Eq. (13)] decay as a power law in the momentum eigenbasis:

Umm′ = 〈m|Û |m′〉 ∼ 1/|m −m′|α, with α = 2. This case was investigated for random matrices, where it was shown that
eigenfunctions are also algebraically localized with the same exponent α [14]. However, the localization picture is not very
sensitive to the behavior of the tails of the wave function. Indeed, a rough estimate of the crossover between the exponential
decay (22) and the power law decay (33) is given by their crossing point,

mc ∼ 3

2
ℓ log ℓ, Wm(mc) ∼

1

ℓ4 log ℓ
. (34)

This implies that by increasing ℓ the exponential localization is pushed to larger momentum windows and down to smaller
probabilities.

[16] B.V. Chirikov, F.M. Izrailev, and D.L. Shepelyansky, Sov. Sci. Rev. C 2, 209 (1981).
[17] Y.S. Weinstein, S. Lloyd, J. Emerson, and D.G. Cory Phys. Rev. Lett. 89, 157902 (2002).
[18] L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood and I.L. Chuang, Nature 414, 883 (2001).
[19] S. Gulde, M. Riebe, G.P.T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I.L. Chuang, and R. Blatt,
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