Skip to main content
Log in

Spin-Based Quantum Dot Quantum Computing in Silicon

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The spins of localized electrons in silicon are strong candidates for quantum information processing because of their extremely long coherence times and the integrability of Si within the present microelectronics infrastructure. This paper reviews a strategy for fabricating single electron spin qubits in gated quantum dots in Si/SiGe heterostructures. We discuss the pros and cons of using silicon, present recent advances, and outline challenges.

PACS: 03.67.Pp, 03.67.Lx, 85.35.Be, 73.21.La

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

    Google Scholar 

  2. G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999).

  3. X. D. Hu and S. Das Sarma, Phys. Rev. A 61, 62301 (2000).

  4. D. Bacon et al., Phys. Rev. Lett. 85, 1758 (2000).

  5. D. P. DiVincenzo et al., Nature 408, 339 (2000).

  6. P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85, 1962 (2000).

    Google Scholar 

  7. H. A. Engel and D. Loss, Phys. Rev. Lett. 86, 4648 (2001).

    Google Scholar 

  8. M. Friesen et al., Phys. Rev. Lett. 92, 037901 (2004).

  9. L. L. Sohn, L. P. Kouwenhoven, and G. Sch¨on, eds., Mesoscopic Electron Transport, NATO ASI Ser. E, Vol. 345. Kluwer, 1997.

  10. R. C. Ashoori et al., Phys. Rev. Lett. 68, 3088 (1992).

  11. M. Ciorga et al., Phys. Rev. B 61, R16315 (2000).

  12. J. M. Elzerman et al., Phys. Rev. B 67, 161308 (2003).

  13. T. Fujisawa et al., Nature 419, 278 (2002).

  14. R. M. Potok et al., Phys. Rev. Lett. 91, (2003).

  15. R. Hanson et al., Phys. Rev. Lett. 91, 196802 (2003).

  16. Elzerman, et al. (unpublished).

  17. L. I. Childress, et al., Phys. Rev. A 69, 042302 (2004).

  18. P. M. Mooney, Mater. Sci. Eng. R-Rep. 17, 105 (1996).

    Google Scholar 

  19. K. Ismail, J. Vac. Sci. Technol. B 14, 2776 (1996).

    Google Scholar 

  20. K. Ismail et al., Phys. Rev. Lett. 73, 3447 (1994).

  21. R. M. Feenstra and M. A. Lutz, J. Appl. Phys. 78, 6091 (1995).

    Google Scholar 

  22. K. Ismail et al., Appl. Phys. Lett. 66, 842 (1995).

  23. F. Schaffler et al., Semicond. Sci. Tech. 7, 260 (1992).

  24. Y. J. Mii et al., Appl. Phys. Lett. 59, 1611 (1991).

  25. T. Okamoto et al., Phys. Rev. B 69, 041202 (2004).

  26. K. Ismail et al., IEEE Electr. Device Lett. EDL-14, 348 (1993).

    Google Scholar 

  27. S. J. Koester et al., Electronics Lett. 39, 1684 (2003).

  28. P. M. Mooney and J. O. Chu, Annu. Rev. Mater. Sci 30, 335 (2000).

    Google Scholar 

  29. L. Klein et al., Appl. Phys. Lett. 84, 4074 (2004).

  30. N. M. Zimmerman et al., Appl. Phys. Lett. 79, 3188 (2001).

  31. T. B. Boykin et al., Appl. Phys. Lett. 84, 115 (2004).

  32. L. J. Sham and M. Nakayama, Phys. Rev. B 20, 734 (1979).

  33. B. Koiller, X. D. Hu, and S. Das Sarma, Phys. Rev. B 66, (2002).

  34. S. N. Coppersmith, (unpublished).

  35. F. Stern and S. E. Laux, Appl. Phys. Lett. 61, 1110 (1992).

    Google Scholar 

  36. P. W. Shor, in Proceedings of the 35th Annual Symposium on Fundamentals of Computer Science (IEEE Press, Los Alamitos, 1996), pp. 56–65.

    Google Scholar 

  37. A. M. Steane, Phys. Rev. A 68, 042322 (2003).

    Google Scholar 

  38. S. Liao, S. N. Coppersmith, M. A. Eriksson, and M. Friesen, (unpublished).

  39. R. de Sousa and S. Das Sarma, Phys. Rev. B 67, 033301 (2003).

  40. R. de Sousa and S. Das Sarma, Phys. Rev. B 68, 115322 (2003).

  41. A. V. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. Lett. 88, 186802 (2002).

    Google Scholar 

  42. A. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. B 67, 195329 (2003).

    Google Scholar 

  43. M. Chibi and J. Hirai, J. Phys. Soc. Jpn. 33, 730 (1972).

  44. J. P. Gordon and K. D. Bowers, Phys. Rev. Lett. 1, 368 (1958).

    Google Scholar 

  45. A. M. Tyryshkin et al., Phys. Rev. B 68, 193207 (2003).

  46. J. P. Klauder and P. W. Anderson, Phys. Rev. 125, 912 (1962).

    Google Scholar 

  47. W. B. Mims, Phys. Rev. 168, 370 (1968).

    Google Scholar 

  48. G. Feher and E. A. Gere, Phys. Rev. 114, 1245 (1959).

  49. C. Tahan, M. Friesen, and R. Joynt, Phys. Rev. B 66, 035314 (2002).

  50. Y. A. Bychkov and E. I. Rashba, J. Phys. C-Solid State 17, 6039 (1984).

    Google Scholar 

  51. Z. Wilamowski et al., Phys. Rev. B 66, 195315 (2002).

  52. A. M. Tyryshkin, S. A. Lyon, W. Jantsch, and F. Schaeffler, preprint cond-mat/0304284.

  53. C. Tahan and R. Joynt, “Spin relaxation in SiGe two-dimensional electron gases,” preprint cond-mat/0401615.

  54. A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 61, 12639 (2000).

    Google Scholar 

  55. A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 64, 125316 (2001).

    Google Scholar 

  56. B. I. Halperin et al., Phys. Rev. Lett. 86, 2106–2109 (2001).

  57. Aleiner I. L. and V. I. Fal'ko, Phys. Rev. Lett. 87, (2001).

  58. D. M. Zumbuhl et al., Phys. Rev. Lett. 89, (2002).

  59. E. Tsitsishvili and G.S. Lozano and A.O. Gogolin, “Rashba coupling in quantum dots: exact solution,” preprint cond-mat/0310024.

  60. C. Tahan, M.Friesen, and R. Joynt (unpublished).

  61. D. Gottesman, J. Mod. Optic 47, 333 (2000).

    Google Scholar 

  62. D. Aharonov and M. Ben-Or, in Proc. 29th Ann. ACM Symp. on Theory of Computing, p. 176, ACM, New York, 1998, preprints quant-ph/9611025, quant-ph/9906129.

    Google Scholar 

  63. J. Schliemann, D. Loss, and A.H. MacDonald, Phys. Rev. B 6308, 085311 (2001).

    Google Scholar 

  64. X. D. Hu and S. Das Sarma, Phys. Rev. A 66, 012312 (2002).

    Google Scholar 

  65. A. N. Korotkov and M. A. Paalanen, Appl. Phys. Lett. 74, 4052 (1999).

    Google Scholar 

  66. M. H. Devoret and R. J. Schoelkopf, Nature 406, 1039 (2000).

    Google Scholar 

  67. M. Friesen, R. Joynt, and M. A. Eriksson, Appl. Phys. Lett. 81, 4619 (2002).

    Google Scholar 

  68. M. Friesen et al., Phys. Rev. B 67, 121301 (2003).

  69. This criterion, different than used in our previous papers, represents the amplitude of error, consistent with the probability of error mentioned above (10?6–10?4) (D. Gottesman and E. Yablonovitch, private communications).

  70. N. J. Craig et al., Science 304, 565 (2004).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, M.A., Friesen, M., Coppersmith, S.N. et al. Spin-Based Quantum Dot Quantum Computing in Silicon. Quantum Information Processing 3, 133–146 (2004). https://doi.org/10.1007/s11128-004-2224-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-004-2224-z

Navigation