Skip to main content
Log in

Progress in Quantum Algorithms

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We discuss the progress (or lack of it) that has been made in discovering algorithms for computation on a quantum computer. Some possible reasons are given for the paucity of quantum algorithms so far discovered, and a short survey is given of the state of the field.

PACS: 03.67.Lx

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. W. Shor, “Polynomial Time Algorithms for Prime factorization and Discrete logarithms on a Quantum Computer,”

  2. L. K. Grover, “Quantum Mechanics Helps in Searching for a Needle in a Haystack", Phys. Rev. Lett. 78, 325–328 (1997).

    Google Scholar 

  3. P. W. Shor, “Why haven't More Quantum Algorithms been Found?" J. ACM 50, 87–90 (2003); Siam J. Comput. 26, 1484-1509 (1997).

    Google Scholar 

  4. S. Cook, “The Complexity of Theorem Proving Procedures,” in Proc. of the 3rd Annual ACM Symposium on Theory of Computing(ACM Press, New York 1971), pp. 151–158.

    Google Scholar 

  5. R. Karp, “Reducibility Among Combinatorial Problems,” in (R. Miller, and J. Thatcher), Complexity of Computer Computations, (Plenum, NY, 1972), pp. 85–103.

    Google Scholar 

  6. L. A. Levin, Problems of Information Transmission"Universal Search Problems,” 9(3), 265–266 (1973) [Russian].

    Google Scholar 

  7. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, (W. H. Freeman and Company, 1979).

  8. S. Cook, “The P versus NP Problem,” at http://www.claymath.org/millennium/.

  9. M. Sipser, “The History and Status of the P Versus NP Question,” in Proc. 24th ACM Symposium on the Theory of Computing, 1992, pp. 603–619.

  10. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and Weakness of Quantum Computing", SIAM J. Comput. 26, 1510–1523 (1997).

    Google Scholar 

  11. D. Aharonov and O. Regev, “Lattice Problems in NP ? co-NP,” manuscript in preparation, available at www.tau.ac.il/ odedr/.

  12. D. R. Simon, “On the Power of Quantum Computation Siam", J. Comput. 26, 1474–1483 (1997).

    Google Scholar 

  13. M. Mosca and A. Ekert,. ”The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer,” in Proc. of the 1st NASA International Conference on Quantum Computing and Quantum Communication, Palm Springs, USA, Lecture Notes in Computer Science, 1509(1999); arXiv: quant-ph/9903071.

    Google Scholar 

  14. S. Hallgren, “Polynomial-time Algorithms for Pell's Equation and the Principal Ideal Problem,” in Proc. 34th Annual ACM Symposium on Theory of Computing, (ACM Press, 2002), pp. 653–658.

  15. W. van Dam, S. Hallgren, and L. Ip, “Quantum Algorithms for Some Hidden Shift Problems,” pp. 489–498. Proc. ACM-SIAM Symposium on Discrete Algorithms, 2003

  16. R. Beals, “Quantum computation of Fourier Transforms over Symmetric Groups,” in Proc. 29th Annual ACM Symposium on Theory of Computing, 1997, pp. 48–53.

  17. M. Ettinger and E. H¨oyer, “On Quantum Algorithms for Non-commutative Hidden Subgroups,” arXiv: quant-ph/9807029.

  18. G. Kuperberg, “A Subexponential-time Quantum Algorithm for the Dihedral Hidden Subgroup Problem,” arXiv: quant-ph/0302112.

  19. L. K. Grover and A. M. Sengupta, “From Coupled Pendulums to Quantum Search,” in R. K. Brylinski and G. Chen, Eds, Mathematics of Quantum Computation, (Chapman & Hall/CRC, Boca Raton, FL), pp. 119–134.

  20. G. Brassard, P. H¨oyer, M. Mosca, and A. Tapp, “Quantum Amplitude Amplification and Estimation,” AMS Conterporary Math Series 305, 53–74 Quantum Computation and Information, Amer. Math. Soc. (2002).

    Google Scholar 

  21. L. K. Grover, “Quantum Computers can Search Rapdily by Using Almost any Transformation,” Phys. Rev. Lett. 80, 4329–4332 (1998). "Needle in a Haystack", Phys. Rev. Lett. 78, 325-328 (1997).

    Google Scholar 

  22. A. Ambainis, “Quantum Walk Algorithm for Element Distinctness,” quant-ph/0311001.

  23. A. Ambainis, “Quantum Walks and their Algorithmic Applications,” quant-ph/0403120.

  24. A. Ambainis, J. Kempe, and A. Rivosh, “Coins Make Quantum Walks Faster,” quantph/ 0402107.

  25. A. M. Childs, R. E. Cleve, E. Deotto, E.Farhi, S. Gutmann, and D. A. Spielman, “Exponential Algorithmic Speedup by Quantum Walk,” pp.59–68. Proc. 35th ACM Symposium on Theory of Computing, (ACM Press, 2003).

  26. M. Bordewich, M. Freedman, L. Lov´asz, and D. Welsh, “Approximate Counting and Quantum Computation,” available at http://research.microsoft.com/research/theory/freedman/.

  27. W. van Dam, “Quantum Computing and Zeroes of Zeta Functions,” arXiv: quantph/ 0405081.

  28. E. Farhi, J. Goldstone, S. Gutman, and M. Sipser, “Quantum Computation by Adiabatic Evolution,” arXiv: quant-ph/0001106.

  29. D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, “Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation,” arXiv: quant-ph/0405098.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shor, P.W. Progress in Quantum Algorithms. Quantum Information Processing 3, 5–13 (2004). https://doi.org/10.1007/s11128-004-3878-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-004-3878-2

Navigation