Skip to main content
Log in

Unambiguous State Discrimination in Quantum Key Distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum circuit and design are presented for an optimized entangling probe attacking the BB84 Protocol of quantum key distribution (QKD) and yielding maximum information to the probe. Probe photon polarization states become optimally entangled with the signal states on their way between the legitimate transmitter and receiver. Although standard von-Neumann projective measurements of the probe yield maximum information on the pre-privacy amplified key, if instead the probe measurements are performed with a certain positive operator valued measure (POVM), then the measurement results are unambiguous, at least some of the time. It follows that the BB84 (Bennett–Brassard 1984) protocol of quantum key distribution has a vulnerability similar to the well-known vulnerability of the B92 (Bennett 1992) protocol

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C.H. (1992). Phys. Rev. Lett. 68:3121–3124

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Gisin N., Ribordy G., Tittel W., Zbinden H. (2002). Rev. Mod. Phys. 74:145–195 (See p. 152.)

    Article  ADS  Google Scholar 

  3. Brandt H.E. (1999). Am. J. Phys. 67:434–439

    Article  ADS  MathSciNet  Google Scholar 

  4. Brandt H.E., US Patent No. 5,999,285 (7 December 1999)

  5. Bennett C.H., Brassard G. (1984). In : Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India. IEEE, New York, pp. 175–179

  6. H. E. Brandt, : SPIE Proc 5436:48–64 (2004). [In Eq. (132), sin μ and cosμ should be interchanged in the coefficient of |w 3 <] only. Also, e should be e θ. In Eq. (195), the overall sign of the coefficient of |w 2 < should be ∓

  7. Slutsky B.A., Rao R., Sun P.C., Fainman Y. (1998). Phys. Rev. A 57:2383–2398

    Article  ADS  Google Scholar 

  8. Fuchs C.A., Peres A. (1996). Phys. Rev. A 53:2038–2045

    Article  ADS  Google Scholar 

  9. Brandt H.E. (2002). Phys. Rev. A 66(16):032303

    Article  ADS  Google Scholar 

  10. Brandt H.E. (2002). J. Math. Phys. 43:4526–4530

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Brandt H.E. (2003). J. Opt. B 5:S557–S560

    MathSciNet  Google Scholar 

  12. Brandt H.E. (2003). Quantum Inform. Process 2:37–79

    Article  ADS  Google Scholar 

  13. Brandt H.E. (2005). Phys. Rev. A 71(14):042312

    Article  ADS  MathSciNet  Google Scholar 

  14. Brandt H.E. (2005). to appear in : J. Mod. Opt

  15. Brandt H.E.(2004). Invention Disclosure: Quantum Cryptographic Entangling Probe (U.S.) Army Research Laboratory, Adelphi, MD,

    Google Scholar 

  16. Brandt H.E. (2000). Phys. Rev. A 62(14):042310

    Article  ADS  Google Scholar 

  17. Brandt H.E. (2001). Phys. Rev. A 64(5):042316

    Article  ADS  MathSciNet  Google Scholar 

  18. Brandt H.E. (2002). Contemporary Math 305: 43–52

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard E. Brandt.

Additional information

Pacs: 03.67.Dd, 03.67.Hk, 03.65.Ta

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, H.E. Unambiguous State Discrimination in Quantum Key Distribution. Quantum Inf Process 4, 387–398 (2005). https://doi.org/10.1007/s11128-005-0003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-005-0003-0

Keywords

Navigation