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Further results on the cross norm criterion for separability
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In the present paper the cross norm criterion for sepatgbilidensity matrices is
studied. In the first part of the paper we determine the valtieeogreatest cross norm
for Werner states, for isotropic states and for Bell diadgjetates. In the second part
we show that the greatest cross norm criterion induces d nongutable separability
criterion for bipartite systems. This new criterion is ae&sary but in general not a
sufficient criterion for separability. It is shown, howevtrat for all pure states, for
Bell diagonal states, for Werner states in dimengioa 2 and for isotropic states
in arbitrary dimensions the new criterion is necessary affiicient. Moreover, it is
shown that for Werner states in higher dimensidns 3, the new criterion is only
necessary.

I. INTRODUCTION

The greatest cross norm on the tensor product of the setmefttass operators on two (or more)
Hilbert spaces captures the concept of entanglement intgpretheory in a mathematically natural
way: in [[A] a separability criterion for mixed quantum stateas proven using the greatest cross
norm on the tensor product of sets of trace class operatofimite dimensional Hilbert spaces.
It was shown that a density operafoiis separable if and only if the greatest cross nornp o
equal to 1. In[[R] the value of the greatest cross norm for |gteiees has been computed in terms
of the Schmidt coefficients of the state. In the first part o aper we determine the value of
the greatest cross norm for Werner states and for isotrdptess We use methods to compute
entanglement measures under symmetry recently discugsedllbrecht and Werner[]3] and by
Terhal and Wollbrecht[J4]. We also clarify the relationstupthe greatest cross norm with the
robustness of entanglement and determine the value of dategt cross norm for Bell diagonal
states.

In the second part of this paper we introduce and study a mmessary separability criterion
for bipartite systems induced by the greatest cross nor@ricin. We show that the new criterion
completely characterizes the separability propertiesuné states, Bell diagonal states, isotropic
states in arbitrary dimensions and Werner states in dirnadsi 2 while in dimensiord > 3 some
inseparable Werner states satisfy the criterion as wellr r@sults imply that the new criterion
is neither weaker nor stronger than the Peres-Horodeckiiyggartial transpose (ppt) criterion
[B.B]. [We call a separability criterion (A) weaker than @agability criterion (B) if every state that
violates (A) also violates (B).] Our results also show tlinat hew criterion is not weaker than both
the reduction criterion for separabilitl] [7], and the seqbdlity criterion introduced by Nielsen and
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Kempe [B]. By the results of][9] this also implies that outterion is not weaker than the entropic
separability criteria based on the generalized Rényi agalli§ entropies. Moreover, violating our
criterion does not imply distillability.

This paper is organized as follows: In Section]ll A we collsome basic definitions and re-
sults. In Sectioh ITB the greatest cross norm is evaluatedgerators of rank one. In Sectipn ]I C
we proceed to compute the value of the greatest cross norkivdamer states, in Sectidn 1] D for
isotropic states and in Sectipn ]I E for Bell diagonal statesSectior{ TTF we clarify the relation of
the greatest cross norm with the robustness of entanglemtesduced in [IP]. In Sectiop ]Il we
introduce and study our computable separability criterion

Throughout this paper the set of trace class operators oe $tilbhert spacei is denoted by
T(H), the set of Hilbert-Schmidt operators #irby HS(H) and the set of bounded operatorstbhby
B(H). A density operator is a positive trace class operator witbet one. We use the Dirac bra/ket
notation throughout.

Il. SEPARABILITY AND THE GREATEST CROSS NORM
A. Preliminaries

Definition 1 LetH; andH, be two Hilbert spaces of arbitrary dimension. A density eparp on
the tensor produdt; ® Hy is calledseparabléf there exist a familyw; } of positive real numbers, a
()

family {pi(l)} of density operators oi; and a family{ P; } of density operators oH, such that

p=S wpV©p?, (1)
|

where the sum converges in trace class norm. A non-sepastdikeis callecentangled

The Schmidt decomposition is of central importance in tharatterization and quantification
of entanglement associated with pure states.

Lemma 2 LetH; andH; be Hilbert spaces of arbitrary dimension and |g € H; ® H. Then there
exist a family of non-negative real numbdng }; and orthonormal base§|a;) }i and {|b;)}; of Hy
andH» respectively such that

W) =3 Vhilai @bi).

The family of positive number§p; }i is called the family ofSchmidt coefficientsf |y).
Consider the spaceXH;) andT(Hy) of trace class operators ¢ andH, respectively. Both

spaces are Banach spaces when equipped with the trace ctas§ ”‘(11) or || - H(lz) respectively,
see, e.g., Schattep J13]. In the sequel we shall drop the'su@ and write| - |1 for both norms,
slightly abusing the notation; it will be always clear frohetcontext which norm is meant. The
algebraic tensor produttH;) ®aigT(H2) of T(Hy) andT(Hy) is defined as the set of all finite linear
combinations of elementary tensersv, i.e., the set of all finite sunigi_; u; ® vi whereu; € T(H;)
andv; € T(Hp) for all i.



Definition 3 A norm||- || onT(H1) ®aigT(Hz) is called asubcross nornf ||ty @to|| < ||ty ||1]|to]|1 for
all't; € T(H1) and b € T(Hp). Itis called across nornif ||ty ®to|| = ||t1]|1]|t2||1 for all t1 € T(H1) and
to € T(Hp).

It is known that we can define a norm B(H;) ®agT(H2) by

n n
IItHViZinf{ZHUilllHVilll t= Zui®vi}, 2
i=1 i=1

wheret € T(H;) ®alg T(H2) and where the infimum runs over all finite decompositionsg ofto
elementary tensor§ J[L4].

The norm|| - ||y defined in Equatior{]2) is born to be subcross and can be stwbadross (for
a proof see, e.g.[TL4]). Moreovef; ||y majorizes any subcross norm @(H;) ®ag T(H2) and is
therefore often also referred to as reatest cross norron T(Hy) ®aigT(H2). The completion of
T(H1) ®aig T(H2) with respect tg| - ||y is denoted byr(H;) ®y T(Hz). In finite dimensions we have
T(H1) ®@yT(Hz) = T(Hy @ Hy) [[4].

In analogy we can also define a cross normis(H;) ®agHS(H2) by

n n
Ht||gizinf{zHUinHVin t= Zui®vi}, (3)
i=1 i=1

wheret € HS(H1) ®aigHS(H2) and where the infimum runs over all finite decompositions ioto
elementary tensord.- |2 denotes the Hilbert-Schmidt norm.

In the following we are mainly interested in the situationerdbothi; andH, are finite dimen-
sional, henc&(H;) = B(H1) andT(Hy) = B(Hz).

The following theorem demonstrates tljat|, captures the concept of entanglement in quantum
theory in a mathematically natural way. For a proof $¢e [1].

Theorem 4 Let H; and Hy be finite dimensional Hilbert spaces apdbe a density operator on
H1; ® Ho. Then the following statements are equivalent:

e pis separable

e [plly=1.

B. Operators of rank one

The following proposition is a slight generalization of aposition that has been proven i [2].
It shows that on pure statéls ||y can be expressed by the Schmidt coefficients of the state. We
reproduce the proof here as the proof method is essentitiiéaesults in Sectign]ll.

Proposition 5 Let H; and H, be finite dimensional Hilbert spaces and |éf),|w) € H1 ® Hy be
unit vectors andy) = ¥; /pil@) ® [Xi) and|w) = ¥, /djlaj) ®|B;) their Schmidt representations
respectively. Herg|@)}i and{|a;)}; are orthonormal bases af; while {|x;) }i and {|B;)}; are
orthonormal bases df,. Moreover, p>0and g > 0andy;pi = y;qj = 1. Let Si= |)(w|. Then
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Proof: Without loss of generality we assume tkHat= Ho which can always be achieved by possibly
suitably enlarging one of the two Hilbert spaces. Furthes,identify H; = H, with C", where

n = dimHz, i.e., we fix an orthonormal basis i which we identify with the canonical real basis
in C". With respect to this canonical real basigifiwe can define complex conjugates of elements
of Hy and the complex conjugate as well as the transpose of a lopesator acting oH;. From the
Schmidt decomposition it follows that

S=lWy{wl =Y Pale) (@] @ ) (B @)

1]

From the definition off - ||y it is thus obvious thaf/S||y < ¥;; ,/Pidj. Now consider the Hilbert
spacéiS(H; ® Hp) of Hilbert-Schmidt operators afy @ Hy equipped with the Hilbert-Schmidt inner
product(f|g) = tr(f'g). Equation [}#) induces an operatiig on HS(H; ® Hy) as follows. Every
element{ in HS(Hy ®Hp) can be writter{ = 3 x ® Yk wherex, andy are trace class operators on
Hy andH; respectively. Theflsis defined or{ asAs({) := Y jk /Pidj (Xi %I B}) @) (aj| @y where
IX{") and |B]-k> denote, respectively, the complex conjugates of the ve@tgrand|(3j) with respect
to the canonical real basis {@". Proposition 11.1.8 in[[35] implies th&ts({) is independent of
the representation @. Consider a representati®= y|_; u; ®v; of Sas sum over simple tensors.
Denote the transpose afby v'. Then the operator defined by

As(() = Z_ltr(ViTXk)Ui ® Yi (5)

is equal to2s (by virtue of Proposition 11.1.8 iM[[L5]). We denote the &adass norm on
T(HS(H1 ®Hp)) by 1(+). The operatofls is of trace class and the right hand side of Equatipn (4) is
the so-called polar representatioraf which impliest(2s) = ¥;; \/Pid;, see [IB] s admits also
many other representatioRig ~ 3; f; ® g; with families of operatorg f; } and{g;} acting onti; and

Ho respectively. It is known that

T(2As) = inf {Z Ifill2[gill2

As~ > fiwg } <|ISlly, (6)

where the latter inequality follows fronfz||> < ||z||1 and from the fact that by construction each
decomposition of(s corresponds in an obvious one-to-one fashion to a decotmposi S. For a
proof of the first identity in Equatiori](6) seg]13], page 4BRisIproves the propositiomn)

Corollary 6 LetH; and Hy be finite dimensional Hilbert spaces and febe a density operator
onH; ®@Hy. Let{|@)}i and {|aj)}; be orthonormal bases af; and let{|x;)}i and {|Bj)}; be
orthonormal bases dafz. If p = 3; a&j|@)(aj| @ [Xi) (Bjl, then|lplly = Tij [aij]-



Now consider the following expression

o:T(H;®H) = R,a(0) :=inf {Z)\i 1S]ly| 0= Z}\is, whereA; > 0, S of rank 1} (7)

where the infimum is over all decompositionsooihto operators of rank 1. Obviouslyp||y < a(o)
for all 0 € T(H1) ®aigT(H2). We first show a little lemma

Lemma 7 Leto € T(Hy) ®agT(Hz), thena(o) = ||ally.
Proof: a is obviously a norm off(Hy) ®agT(H2). Leto = 01 ® 02 with 01 € T(Hy) ando, € T(Hp).
Then letoy =5; )\i(l)sﬂ) andoy =3 )\EZ)SEZ) be the polar decompositionsof ando, respectively

[L3]. Thensm and S?z) are operators of rank 1 for all j. Thusa(o1 ®02) < 3 ‘)\i(l))\gz)‘ =

|01 ® 02||1. This proves thatt is a subcross norm. As- ||y majorizes each subcross seminorm we
find thata (o) < ||a||y for all o € T(Hy ® Hp). Hencea (o) = ||o]|y. O

C. Werner states

LetH be a finite dimensional Hilbert space anddet= dimH > 1. Define
Fi=3%li®j)(jail
I7J

where(|i)) is a orthonormal basis of. Werner states (first considered [n][16]) are mixed quantum
states i (H®H). They can be parametrized by a real paraméteith —1 < f <1 and are given

by
1

Note that tfp;[F) = f. Let G be the group of all unitary operatorsi® H of the formU @ U where
U is a unitary orl. Then a mixed quantum state is invariant under the action, @eGp = VpV'
forallV € Gifand only ifp = ps for somef, see [Ip]. Define thewirling operatorPg by

PG<o)z/dU(U®U)o(uT®uT)

where the integration is with respect to the Haar measureeofihitary group of.
From the definitions oPg and|| - ||y it readily follows that|Pg(0)||y < ||o]|y for all o € T(H®H).
Let M denote the set of operators of rank 11R H, and consider the expression

B(py) i=int {zm ISy

SEM,AiZO,prZAiF’G(S)}- 9)



Lemma 8 Let f € [-1,1] and letps be the Werner state to f, th@ips) = ||pt]|y-

Proof: Every admissible decompositionpf = ¥;AiS in Equation [[7) induces vips = Pg(pt) =
SiAiPc(S) an admissible decomposition in Equatiph (9). Hefger) < a(p¢). In turn for every
decompositiomr = 3; AiPc(S) in Equation[(p) we findips [ly < 5 MillPe(S)lly < 5 MilISilly- Thus
it follows that alsg||p¢ ||y < B(pf). O

We are now ready to compute the greatest cross norm for \Wetaiess.

Theorem 9 Letp; be a Werner state, then

1 : for0<f<1

||pf”\’:{l—f - for —1<f<0" (10)

Proof: Let pr = $;AiPc(S) be an admissible decomposition in Equatipn (9), then weaV@&it=
|di) (W;| for all i. We write the Schmidt decompositions|¢f) and|y;) as, respectively,

00 =3 /)[4 @b]")
J
=3 Vol |4’ od”)

(M) (i) (1) (i : .
Wher.e <a] )j : (bJ )j , (dk )k and <ek )k are orthonormal bases @frespectively for alli and
)y pg') = qul((') =1 for alli. The condition t(p¢F) = f reads

=) (4| (o). an

Thus

Blp1) = inf{Z)\i\/W
]

where the infimum is over all decompositionspafof the formps = 5 AiPg (|$i) (Yi|) and where
(pg'))_ and (qﬁ'))k are the Schmidt coefficients 0f;) and |y;) respectively. Clearh\f(ps) >

j
1. Now for 0< f < 1 choose\j = &1 and p(ll) = q(ll) =1 and pgl) = qf}) =0 for j>1and
k> 1. Moreover choos{e(ll)) a(11)> = <d§l)) b(11)> = /f, then Equation[(11) is satisfied and

Pr= Z?\iPG(|¢i><UJiD}

Yijk \)\ih/pgi)q(i) = 1 showing that the infimum is attaingig¢||y = B(pf) = 1. In the case-1 <
f < 0 we note that



The last inequality follows readily by considering the Sdtindecomposition of an unnormalized
vector of the formd® e—e®d). Thus in genergB(ps) > 1— f. Now choose\; = &1 again and

62) = wa) = /b [l @) — /6l o @ eV )
wherep{? =1-pi’ =3 -1,/1-f2 and where’a§1)> and )b(ll)> satisfy<b(11)) a(11)> = 0. For
- ; ; - (o S (OI() N A (Y I()
this choice Equatior{ (11) is satisfied and we have ¥;; A; P, P; and—f = z,—'i‘k)\' P; Pk -
Thus|[pt|ly=B(pr) =1-f.O

D. Isotropic states

Again letH be a finite dimensional Hilbert space with dimenstbr= dimt > 1. Consider the
groupG of a local unitary transformations ¢w H of the formU @ U whereU is a unitary orti and
U denotes the complex conjugatelbfwith respect to an arbitrary but fixed orthonormal basis.in
The set of states invariant under all element&aire the so-calleotropic statessee, e.g.[[7]18,4].
The isotropic states can be parametrized by a positive srahpeteF < [0, 1] and are given by

pr = o (1 ) (@) £ F [ (0] 12)

Here|WT) = % 59 . li®i) and(]i)); is an arbitrary orthonormal basisiin We define
F:=d|Wwh) (W = %|i®i><i® jl.
'[hen tr(pFF) = dF. We proceed in analogy to Sectipn ]I C and define the twirlipgratorl?’é for
G by
Ps(0) = /dU(U 2U0)oUTeUu™

where the integration is again with respect to the Haar nreasiuthe unitary group oH. Let M
denote the set of operators of rank 11 H, then consider the expression

~

B(pr) 1= inf {zmusuy

SEM,)\iZQpF:Z)\iﬁé(S)}- (13)



Lemma 10 Let F € [0,1] and letpg be the isotropic state to F, theﬁ(pp) = [|prly-
Proof: Analogous to the proof of Lemni 81
Theorem 11 Let F € [0, 1] andpg be the isotropic state to F, then

[ 1 : forO<F<}
HPFHV—{dF p for f<F<1 (14)

Proof: The proof proceeds in analogy to the proof of Theof¢m 9.dret Zi?\il?’@(S) be an ad-
missible decomposition in Equation [13), then we w8te- |$;) (| for all i. We write the Schmidt

decompositions ofd;) and |gi) as |¢i) = 54/ pgi) ‘a}i)®b§i)> and |[y;) = zk\/qg) ‘d,ﬁi) ®e|(<i)>

where <a§i))j , <b§i)>i , (d,ﬁi))k and <e]((i)>k are orthonormal bases #@frespectively for alli and

2 pﬁ” — 5a) = 1 for alli. The condition t(pe ) = dF reads
dF = Zm/pﬁ')qg) R DICRIEY (15)
]

Where‘a(-i)*> and‘eg)*> denote the complex conjugates‘af)> and‘e;g)> respectively. Thus

|
Blor) = inf{gmm
]

where the infimum is over all decompositionspafof the formps = 3; AiPg (|di) (Wi]) and where

(pg')) ~and (q,&”) ) are the Schmidt coefficients ;) and|y;) respectively. From[(15) it follows
immetljiately thaf(pg) > dF.

FordF > 1, consider a stat@) of the form|y) = ¥; \/[i|& ® &) where{e }; is an orthonormal
basis of and where(y; /fi)° = dF. It has been shown ifJ[4] thate = P(|w)(W|). Now
Propositiorfo implies thatpr ||y = B(pr) = dF.

For 0< dF < 1, consider two state®) and |b) in H with (a*|b) = v/dF. Again, it has been
shown in [#] thapr = f’é(\a® b)(a®bl). As by Theorenfi]4 we hayépr) > 1, this proves|pr ||y =

B(pr)=1.00

pr = ZNE’@(WO(%D}

E. Bell diagonal states

ConsiderC? and let{|1),]2)} be an orthonormal basis 6. Then the Bell basis of?® C? is
given by

1 o
|Wo) = ﬁ|11>+|22>, W) = 72|12>+|21>

W) = 121~ [12), W) = —-[11) - 22,

8



Bell diagonal states are the density operator€ém C2 which are diagonal in the Bell basis
3
p=") Ai|Wi)(Wil.
2,

Bell diagonal states are known to be separable if and oly<f % for all i, [L7[18].

Theorem 12 Letp € T(C?® C?) be a Bell diagonal state, i.ep,= T2 oAi|Wi)(Wi| with A; > 0 for
alli. Then

2max\; : for maxh > 1
||p||y:{ A A>3

1 @ for maxAi <5 (16)

First part of the proof First consider the case max < % In this case there is an explicit
decomposition ofp as a mixture of eight unentangled pure states (§de [18] familsle Thus
|plly = 1. Now consider the case that max> % In this case there exists an explicit de-
composition ofp as an equal probability mixture of eight entangled pureestatach of which

has {% + %\/2 maxAi — 4(max A)2, % — %\/2 max A — 4(max )\i)z} as its Schmidt coefficients
(again, see[J18] for details). From the subadditivity|jof|y and Propositiofi]5 it follows readily
that ||p|ly < 2maxA;. We postpone the proof for the remaining inequaljpfly > 2maxA; until

Section1ITE.O

F. Relationship with the robustness of entanglement

Denote the set of Hermitean trace class operators on a Hilpacei by T"(H). A norm closely
related to]| - ||y can be defined on(H1) @41 T"(Hz) by

[tls:=inf {_;nuinl Ml |t= 3w } (17)

wheret € T"(H;) ®aiq T"(H2) and where the infimum runs over all finite decompositions ioito
elementaryHermiteantensors. From the definitions @f ||y and|| - ||s it is obvious that in general
Itlly < |It||s for all Hermitean trace class operatbré-or a density operatar it is also obvious that
lofls=1ifand only ifois separable. Clearly;. ||sis the greatest cross norm of(Hi ) ©aigT"(Hz).

Lemma 13 LetH be a finite dimensional Hilbert space and tebe a Hermitean operator ol® H,
then

|lo||s=k(0) :=inf{a; +a_|oc=a;p;y —a_p_,a: > 0,p, separable density operatofs



Proof: Obviously, for everyo there area. > 0 and separable density operat@rs such that
o=a.p—ap_. [Itis always possible to writas as a sum of Hermitean simple tensors
0 =YX ®Yi to get the desired decomposition just decompose;aindy; into their positive
and negative parts and rearrange terms]. The inequadify < k(o) is obvious. Ifo = 01 ® 0,
thenk (o) < ||01]|1]|o2||1. Thusk is a subcross norm and thué&o) < ||o||s for all Hermiteano. O

For a density operatar the quantityEr(o) = % (llo]]s— 1) is calledrobustness of entanglement
[LQ], see alsd[19]. The robustness of entanglement hasfwgal meaning of the minimal amount
of separable noise that destroys the entanglement of a gigén

Proposition 14 LetH be a finite dimensional Hilbert space. Then the robustnesntainglement
and the greatest cross norm @(H ® H) are related by

Er(0) = [[ofy—-1 (18)
whereao is a positive trace class operator with trace one.

Proof: The analogue of Lemn{a 7 holds fF [|s. Let @) € H®H and letPy = [y)(y|. In [[T] it
has been shown thiBy||s=2 (3 \/ﬁ)z — 1. Thus Propositiofi 5 implies théPy||s = 2||Py|ly— 1.
Therefore Lemm@ 7 and the analogue statement ffg imply that | o||s > 2||a||, — 1 for all posi-
tive Hermitearo with trace one. This proves the propositian.

For projection operators we have equality in Equatjof (M3reover, in [IP] Vidal and Werner
computed the robustness of entanglement for density apsnaith symmetry. The results of Vidal
and Werner show that for Werner and isotropic states theaésts an equality in Equatiori ([18).
However, a proof of whether or not equality holds [n](18) imegel has not been found by this
author.

I1l. A COMPUTABLE SEPARABILITY CRITERION
A. Formulation of the criterion

Every finite dimensional Hilbert spaéés isomorphic taC", with n=dim(H). This corresponds
to identifying a fixed orthonormal basis ihwith the canonical real basis i@i". In C" there is a
notion of complex conjugation. We denote the complex coaeof|y) € C" by |P*).

Proposition 15 LetK; ~ C" and K, ~ C™ be finite dimensional Hilbert spaces. There is a one-
to-one correspondence between statesc K; ® Ko and Hilbert-Schmidt operators Ak, — Kj
according to the rule: lef) = ¥;; ¢ij|a) ® |bj) be a decomposition ¢f) in terms of orthonormal
bases{|a;)} and {|bj)} of XKy andK; respectively. Then#) is given by Ap) = 3;; cij[ai) (bj|.
Conversely, if A= 3 cij|a) (bj| for some orthonormal basg$a;) } and{|bj)} ofK; andk; respec-
tively, thenja) = 3;; Gij|a) @ [by).

10



Proof: We only need to show thai(y) is well-defined and independent of the decomposition
of |W) and similarly thaja) is independent of the representationfo€hosen. But this follows
immediately from, e.g., Proposition 11.1.8 jn][15].

Corollary 16 Letk; ~ C" andk, ~ C™ be finite dimensional Hilbert spaces. The one-to-one cor-
respondence between pure stafd$ € K1 ® Ko and Hilbert-Schmidt operators Ak, — K1 from
Proposition Ip is isometric, i.e(A(W1)|A(Y2))ns = (P1]W2) and (Ya|Ps) = (AB)Hs.

Proof: Denote the canonical real basexefndk by {|&)}i and{|f;) }j respectively. Lety1) =
YijGijle) ®|fj) and|P2) = ¥ pqdpglep) ® | fq) the decompositions afp;) € K1 and [P2) € K2 in
terms of these bases. Thaf;) = 3;; Gjj |a)(fj*| = Yij Gijla) (fj| andA(W2) = zpqdpq|ep)(f§| =
3 padpql€p) (fgl-  Therefore (A(W1)|A(W2))us = tr(AT(W1)A(W2)) = Yijpq i dpq(falfj) (alep) =
Sijpq Cijdpa( fjl fq) (alep) = (W1|W2). This proves the corollaryd

To derive the next theorem we use Proposifion 15 in the cad&ilandk; are the spaces of
Hilbert-Schmidt operators on some other Hilbert spateandH; respectively, i.e.K1 = HS(Hj)
andKy = HS(Hp).

Theorem 17 Let H; and Hp be finite dimensional Hilbert spaces and ¥t= HS(H;) ~ C" and

K2 = HS(H2) ~ C™ be the spaces of Hilbert-Schmidt operatorstanand H, respectively. Then
there exists a one-to-one correspondence between Himnidt operators E HS(H; ® Hp) and
Hilbert-Schmidt operator((T) : HS(Hy) — HS(H; ) analogous to the correspondence in Proposition

3.

Proof: It is well-known thatHS(H) furnished with the Hilbert-Schmidt inner produ@|B)ys =
tr(ATB) is a Hilbert space. Therefore Theor@m 17 is an immediatestprenice of Propositidn15.
O

The correspondence described in Proposifign 15 and Thebrdmas been known and applied
in the quantum optics literature for some time, $e§[]20, 2t r@ferences therein for more details.

In the sequel we always assume without loss of generalityltha Ho, and as in the proof of
Propositiorfb we denote the trace class norfGrF ) by T(2((T)).

Corollary 18 With the notation from Theoren]17, letdHS(H® H) be a Hilbert-Schmidt operator
onH®H. Then there exist a famil{A;}i of non-negative real numbers, orthonormal ba$es};
and{F}; of HS(H) andHS(H) respectively such that

T=>NE®F. (19)

Moreover we have(A(T)) = TiA.

Proof: This is an immediate consequence of Propositign 15 andréhg@y.C

Corollary[I8 can be viewed as an analogue of the Schmidt deesition for density operators.
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We now apply our results to the separability problem for dgrogperators o @ H. It is known
that for any operatoA : HS(H) — HS(H) the following identity holds (sed [13], page 42, and also

Equation [B))

T(A) = inf { > lfill2llgill2

A:z|fi><gi|a|fi>a|gi>GHS(H)} (20)
where the infimum is over all finite decompositionsAinto simple tensors of Hilbert-Schmidt
operators. The next Proposition is our new necessary dafigrariterion.

Proposition 19 LetH be a finite dimensional Hilbert space. Lt T(H® H) be a density operator.
If p is separable, then

T(*A(p)) <1 (21)

Proof: This follows immediately from Equation (R0) and TheorgnHA.

Corollary 20 LetH be a finite dimensional Hilbert space. L@ty € H® H be a pure state|y) is
separable if and only it (A(Py)) = 1.

Proof: This follows immediately from the proof of Propositipn 5.

Remark 21 To check whether the separability criterion in Propositfi# is satisfied by a given
density operatop reduces to the evaluation of the trace class norm of the IH#8ehmidt operator
2A(p). This is completely straightforward using standard line¢égebra packages and accordingly
Equation [2]1) is a computable separability criterion fomdéy operators.

In the next two subsections we compuatél(p)) in the situations tha is an isotropic state or a
Werner state respectively. Moreover, in the subsequesestions we study other families of states
for which Equation[(J1) can be computed.

B. Isotropic states

We continue to use our notation from Sectjon]ll D. We rewpiteas

l1-a
Pr =~ | O[T, (22)

d?F-1
d2-1

whereag = . We prove
Proposition 22 Let F € [0,d] andpg be the corresponding isotropic state, then

dF : for L <F<1
_ @="=
T@‘(pF))—{g—dF : forO<F <3 -

12



For the proof of this proposition we need Ferrers’ form{ia][2

Lemma 23 (Ferrers) LetO<ne Nand g,ay,...,a, € C\{0}, then

1+ 1 1 - 1
1 1+a 1 - 1 1 1
det 1 1 1+3.3 1 :aaz...an<l_|__+..._|__).
: : : . : ' ap an
1 1 1 .- 1+a,

Ferrers’ formula follows readily by induction.

Proof of Propositiorf 22 Denote by{|i)}; the canonical real basis @Y. From Equation[(32) it
follows that

1(X|:

Z|En (Ejjl,

whereE;j; = |i)(j| and where we use the notati¢;j) for Ejj to stress that we think d&j; as an
element ofis(CY). ThusQl(pF)’r = 2(pr) and

F
:FZ“EIJ (Bij| + —5—
1]

1—-02
Z|EIJ E|J|+d2 Z|Eu (Bii| + d3F2|Eii><EJ'J'|- (23)

|
i J

From the formula[(33) we see th%f} is an Eigenvalue of((pr)™(pr) with multiplicity (at least)
d? —d. The second two terms in Equatign](23) act only on the sulesfgspanned by the elements
|Eii). The matrix representation of the second two terms in EqQug#3) in the basig|E; ) }i of Sq

is

daZ
R 1 1
1 1+ % 1
F
ZIE.. (Eil + == JF ZIE.. (Ejj] = - 1 1 14 d“F% SO
' ' l ' do?
1 1 O

(24)

The Eigenvalues of this matrix can readily be evaluated thiéhhelp of Lemm& 23 and are found
2
to beA; = ﬁ—g with d — 1-fold multiplicity andA, = d—12 (with multiplicity one). Therefore adding

the absolute values of the square roots of all Eigenvaluesmive att (2((pg)) = |ag|(d — %) + %.
This proves the Proposition

13



Corollary 24 tr(2(pg)) = dF and||pg|lg = m

Propositiorf 42 implies that an isotropic stateis separable if and only if(2A(pg)) < 1

C. Werner states

Proposition 25 Let f € [—-1,1] andps be the corresponding Werner state, then

f : for —1<f

2 _ <1
T(%(pf»:{d o forizf>1

Proof: We write

d— df —
Q[(pf) d3 dZ‘E” E]]|+ d3—d Z‘Ell E]"

An argument as above shows tR&tp¢) ™2 (ps) has the simple Eigenvalig = d—12 and the degen-

Edf 1;2 with multiplicity d? — 1. This shows that (2A(p¢)) = 'dfd*” +i0
Proposition 25 shows that the criterion in Equatipn] (21)aséied whenevef € [% —-1,1].

This proves that for Werner states the criterion in Equaig®) is exact if and only ifd = 2. In

higher dimensiom > 3 there will always be inseparable Werner states (i.e. gtlkosresponding to

f € [2—1,0[) which satisfy the criterion in Propositidn]19 while otheséparable Werner states

(i.e., those corresponding foe [—1, % — 1[) violate it.

erate Eigenvalug, =

2
Corollary 26 tr(2(p1)) = g1 and [A(pr)llg = \/ G5 — qe—p-

D. A two qubit example

Denote the canonical real basis@? by {|0),|1)} and consider the following family of states
onC?® C?

Pp = P|00)(00] + (1 — p)[®) (],

where 0< p < 1 and|®) = %(\Ol} +110)). Then

2(pp) = PIEoo) (Eoo| + " ([Eoc) (Ext| + Ext) (ool + [Exo) (Eor| + Eon) {Ero).

It is straightforward to compute the trace class norrl(fp). The result is

14



2  (1—Dn)2 2  (1—pn)2
T@W%wzl—p+¢gwfl b M+u—pﬂ+¢%wjl4m —g P>+ (1-p)?

(-p2_,

with equality if and only ifp = 1. Therefore Equatiorf (P1) implies tha is separable if and only
if p=1.

E. Bell diagonal states

We continue to use our notation from Sectjon]ll E but assunvethat (without loss of gener-
ality) {|1),]2)} denotes the canonical real basigifi Letp be a Bell diagonal state, i.e., a density

operator orC? @ C? of the form

p= iiAiI‘PO(WiI-
Then
A(p) = "5 ([Ess) (Enl + [Eza)(Eza) + 2 5 2 (Eas)(El + [Eza) (Exs)
20703 (1) (Bl + Bz (Eaal) + 25 2 (B2 (Ezil + B (Ex)
Hence
() "ap) = LT O ey 4 g )
B N CRICHRN SN

2

_ 2 — 2
L Ro—Asg) :(}‘1 A2) (IE12) (Exz| + |E21) (E21l)

22007 (1) () 4 o) (Enal).

It is straightforward to compute the trace class norrl@d). The resultis

1
T(A(p)) = > (14 |Ao+A3—A1—A2|+ A1 —A2| + Ao —Az|+]|[Ao—A3| — A1 —A2]|)  (24-a)

_ S eithe\o+Az3 > A1+ A2, [Ao—A3z| > |A1—Ag|
_gamaxhic { or Ao+As <Ai+Az Po—Asl < Ai-Ag| . (24-D)
1-2minA; : otherwise

To see Equatior] (Z4-b) note that
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o if Ao+A3 > A1+ A2 and|Ao— Az > |A1— Az|, then maxA; = max{Ao,A3}. Similarly, if
A +A2> Ao+ A3 and|)\1—)\2\ > ‘}\0—)\3|, then may\j = max{)\l,)\g}.

e Conversely, ifA\g+A3z > A1+ A2 and|Ag— Az| < |[A1— Az|, we find minA; = min{A1,A2}.
Similarly, if A1 +2A2 > Ao+ Az and|A1 — Az| < |Ao— Az, we find minA; = min{Ag,A3}.

e Note also that if max\; > %, then we have either the situation that+ Az > A1+ A and
Ao —Az| > |A1—Az| or thathg+Az < A1+ Az and|Ag—Az| < [A1— Az
Proof: To see this, assume without loss of generality Npat max Aj = % + o for somed > 0.
Write A3 = Ag — €, for € > 0. Now assume thatg+ Az > A1+ A2, but|Ag—Ag| < |A1— A2l
Thene=Ag—A3 < A1 —A2] <A1+A2=1—Ag—A3=—-20+¢€. Hence—25 > 0. Thisis a
contradiction.O

e |[Ao—Az| = |A1—A2| implies 2maxAj = 1—2min A;.
e A\o+A3=A1+Azimplies 2maxAj = 1 —2minA;.

Thus maxA; > % implies thatt(A(p)) = 2maxA;. Therefore we conclude that((p)) < 1 if and

only if p is separable.

Conclusion of the proof of Theordm:12he remaining inequality in the proof of Theor¢n} 12 now
follows immediately front(A(p)) < ||p|ly and the results of this subsectian.

F. A two qutrit example
ConsiderC3® C?2 and let{|0), |1),]2)} be the canonical real basis@¥. Consider the following
family of qutrit mixed states defined @@ ® C3

20\ /| G 5-a
pai=7|¥s)) (W + 70+ + 7-0-, (3)

where we restrict ourselves to the parameter rangen2< 5, and where

¥E) == (010 + D1+ 212),
0, = 3 (0)[1){01() + 11)[2)(1/(2I +2)0) 21(0)
0 = 3 (11I0}11(0] + 2)1)(2/(1| + 0)[2) (0] 2).

It is known [24] thatpyq is (i) separable if and only if Z a < 3, (ii) bound entangled if and only if
3 < a <4 and (iii) entangled and distillable if and only ifda < 5.
We have
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A(Pa) = 231 (|Eo0) (Eoo| + |Eo1) (Eo1| +|Eo2) (Eoz| + |E10) (E10| + |E11) (E11]
+ |E12) (E12| + |E20) (E20| + |E21) (E21| + |E22) (E22])
+ 57 (Eoo) (Exal + [Exx) (Ezal + | Ez2) (Eool)

5_
+2—1a (|E11) (Eoo| + |E22) (E1a| + [Eoo) (E22]) -

Accordingly
A(pa) A (pg) = %(‘&D(Eoﬂ + |Eo2) (Eoz| + |E10) (E1o| + |E0) (E20| + |E12) (E12| + |E21) (E21|)
#2202 () (ool + Exs) (Exl + [Ez2 Bzl
10%21—0(2 (IEoo) (Ex1| + |Eoo) (E22| + |E11) (Eool + |E11) (E22|

+  |E22)(Eoo| + |E22) (Ea1l) -

The corresponding Eigenvalue problem can readily be salgety Ferrers’ formula and we arrive
at

19 2
-2, Z _ 2
T(A(pa)) = 57 21\/19 150 + 3a2. (26)
It is easy to see that2((py)) < lifand only if 2< a < 3, i.e., if and only ifpy is separable. This
example shows that there are inseparable (bound entarsgétd$ which violate Equatiop (21) but
satisfy the reduction criterion.

G. Concluding remarks

It is known that ford > 3 all inseparable Werner states violate the Peres-Horogesktive
partial transpose (ppt) criterion for separability (sg@Jbbut do not violate the reduction crite-
rion introduced in[[[7]. As moreover the bound entangledestat subsectiop IMF satisfy the ppt
criterion, it follows from our results in subsections 1)l @ATH that the separability criterion in
Equation 1) is neither stronger nor weaker than the pesitartial transpose criterion. Moreover,
it also follows that the criterion Equatiof {21) is not weakean the reduction criterion for sep-
arability. By the results of[]9] this also implies that ouiterion is not weaker than the entropic
separability criteria based on the generalized Rényi asalli§ entropies. The example in subsec-
tion [ITD]implies that the separability criterion in Equatti (21) is also not weaker than the criterion
proposed by Nielsen and Kempe [ [8] (as the criterion[jn @hpletely characterizes the sepa-
rability properties of isotropic states in arbitrary dins@m, but fails for the statgs, discussed in
subsectiorf TP and for all inseparable Werner states inesisiond > 3, see also[[9]). Finally,
violating our criterion does not imply distillability.

17



AcknowledgementThanks to the members of the Quantum Optics & Informationu@rat Pavia
for their hospitality and in particular to Giacomo Mauro Diano and Shashank Virmani for help-
ful discussions about entanglement and about quantumniafioon in general. Funding by the
European Union project ATESIT (contract IST-2000-29681gratefully acknowledged.

1
2
[3
4

Rudolph O 2000 A separability criterion for density ogersJ. Phys. A: Math. GerB33951-3955
Rudolph O 2001 A new class of entanglement measiiré&ath. Phys42 2507-2512
Vollbrecht K G H and Werner R F 2001 Entanglement measuneler symmetryPhys. RevA 64062307
Terhal B M and Vollbrecht K G H 2000 The Entanglement of fRation for Isotropic States
Phys. Rev. LetB5 2625-2628
[5] Peres A 1996 Separability criterion for density matsiédys. Rev. Let771413-1415
[6] Horodecki M, Horodecki P and Horodecki R 1996 Separgbdf mixed states: necessary and sufficient
conditionsPhys. LettA 781-8
[7] Horodecki M and Horodecki P 1999 Reduction criterion@barability and limits for a class of protocols
of entanglement distillatioRhys. RevA 594206-4216
[8] Nielsen M A and Kempe J 2001 Separable states are moreddigm globally than locally
Phys. Rev. LetB65184-5187
[9] Wollbrecht K G H and Wolf M M 2002 Conditional entropies @their relation to entanglement criteria
Preprintjguant-ph/02020%8
[10] Vidal G and Tarrach R 1999 Robustness of entanglerRags. RevA 59 141-155
[11] Schmidt E 1907 Zur Theorie der linearen und nichtlieesamtegralgleichungen. I. Teil: Entwicklung
willktrlicher Funktionen nach Systemen vorgeschrieloéviath. Ann.63, 433-476
[12] Ekert A and Knight P L 1995 Entangled quantum systems #mel Schmidt decomposition
Am. J. Phys63, 415-423
[13] Schatten R 1970lorm Ideals of Completely Continuous Operat@ral edn. (Berlin: Springer)
[14] Wegge-Olsen N E 199R-Theory and C-algebras(Oxford: Oxford University Press)
[15] Kadison R V and Ringrose J R 1983 & 1986ndamentals of the Theory of Operator Algebrasll
(Orlando: Academic Press)
[16] Werner R F 1989 Quantum States with Einstein-PodoR&gen correlations admitting a hidden-
variable modePhys. RevA 404277-4281
[17] Horodecki R and Horodecki M 1996 Information-theotetispects of inseparability of mixed states
Phys. RevA 541838-1843
[18] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K &9dixed state entanglement and
quantum error correctioRhys. RevA 54 3824-3851
[19] Vidal G and Werner R F 2001 A computable measure of e¢amgntPreprint guant-ph/0102117.
[20] D’Ariano G M, Lo Presti P and Sacchi M F 2000 Bell measuesits and observabléthys. LettA 272
32-38
[21] D’Ariano G M and Lo Presti P 2001 Optimal nonuniversatlyvariant cloningPhys. RevA 64 042308
[22] Ferrers N M 1855 Two elementary theorems in determméntarterly Journ. of Mathi Decembre

e e b e

18


http://arxiv.org/abs/quant-ph/0202058
http://arxiv.org/abs/quant-ph/0102117

1855, p. 364 oNouv. Annales de Mathxvi 402-403;ibid. xvii 190-191; cited afte([23].

[23] Muir T 1911 The Theory of Determinants in the Historical Order of Depat@ntVol. Two, p. 140;
(reprinted by Dover 1960).

[24] Horodecki P, Horodecki M and Horodecki R 1999 Bound ggtament can be activated
Phys. Rev. LetB2 1056-1059

19



