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Abstract

In this work, we introduce a special kind of quantum cloning machine called Hy-

brid quantum cloning machine. The introduced Hybrid quantum cloning machine

or transformation is nothing but a combination of pre-existing quantum cloning

transformations. In this sense it creates its own identity in the field of quantum

cloners. Hybrid quantum cloning machine can be of two types: (i) State dependent

and (ii) State independent or Universal. We study here the above two types of

Hybrid quantum cloning machines. Later we will show that the state dependent

hybrid quantum-cloning machine can be applied on only four input states. We will

also find in this paper another asymmetric universal quantum cloning machine con-

structed from the combination of optimal universal B-H quantum cloning machine

and universal anti-cloning machine. The fidelities of the two outputs are different

and their values lie in the neighborhood of 5

6
.
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1 Introduction

A fundamental restriction in quantum theory is that quantum information cannot be

copied perfectly [1] in contrast with the information we talk about in classical world.

Similarly, it is known that quantum information cannot be deleted against a copy

[2, 21, 22]. But if we pay some price, then approximate or exact cloning and deletion

operations are possible. For example, it does not prohibit the possibility of approxi-

mate cloning of an arbitrary state of a quantum mechanical system. The existence of

Universal Copying Machine’ (UCM) created a class of approximate cloning machines

which are independent of the amplitude of the input state [3, 4, 5]. The optimality of

such cloning transformations has been verified [4]. There also exists another class of

copying machines which are state dependent. The original proof of the no-cloning the-

orem was based on the linearity of the evolution. Later it was shown that the unitarity

of quantum theory also forbids us from accurate cloning of non-orthogonal states with

certainty [17, 18]. But non-orthogonal states secretly chosen from a set can be faith-

fully cloned with certain probabilities [6, 7] or can evolve into a linear superposition of

multiple-copy states together with a failure term described by a composite state [19] if

and only if the states are linearly independent.

The usual scheme of cloning consists of sending a single photon into an amplifying

medium. If there is no photon in the medium, it spontaneously emit photon of any po-

larization but if the photon is present, the amplifying medium stimulates the emission

of another photon in the same polarization . The quality of the amplification process is

never perfect because spontaneous emission can never be suppressed [28]. The 1 → 2

quantum cloning machine can be implemented optically when we take into account the

fact that there is a bridge between stimulated emission and quantum cloning. One of the

first optical experiments using only linear optics by Huang et.al [23] that implemented

the Buzek-Hillery cloning.

Most optical implementations of the 1 → 2 cloning machine use parametric down con-

version as the amplification phenomenon. The cloning fidelities obtained in experiments
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with parametric down conversion are 0.81 ± 0.01 [24] and 0.810 ± 0.08 [25, 26].

As it is not possible to realize a perfect U-NOT gate which would flip an arbitrary

qubit state, it is necessary to investigate what is the best approximation to this gate

[27]. Martini et.al. reported the experimental realization of universal quantum machine

that performs the best possible approximation to the universal NOT transformation.

The optimal U-NOT transformation for flipping a single qubit is given by,

U |ψ〉a ⊗ |X〉bc =
√

2
3 |ψψ〉ab|ψ+〉c −

√

1
3(|ψ,ψ+〉ab + |ψ+, ψ〉ab)|ψ〉c

where the gate prepared in the state |X〉bc, independently of the input state |ψ〉. The

above transformation describes a process when the original qubit is encoded in the sys-

tem ’a’, while the flipped qubit is in the system c. The density operator describing the

output state of the system c is

ρ(out) = 2
3 |ψ+〉〈ψ+|+ 1

3 |ψ〉〈ψ|
Therefore, the average fidelity of the universal NOT gate is F = 〈ψ+|ρ(out)|ψ+〉 = 2

3 ,

which is exactly same as the fidelity of the optimal state estimation for single qubit.

In the case where a qubit is encoded into a physical system to utilize the polarization

states of the photon, the U-Not gate can be realized via stimulated emission. Martini’s

et.al experiment was based on the proposal that universal quantum machine such as

quantum cloner can be realized with the help of stimulated emission in parametric down

conversion. The reported experimental fidelity for the optimal U-NOT transformation

is 0.630 ± 0.008.

In quantum world it is very important to know various limitations imposed by quan-

tum theory on quantum information. Recently, some general impossible operations are

studied by Pati [20] in detail. This unifies the no-cloning, no-compelementing and no-

conjugating theorems in quantum information theory. Among all these impossible op-

erations, the impossibility of ’cloning-cum-complementing’ quantum machines attracts

much attention here in the sense that it is a combination of cloning machine and com-

plementing machine where the probabilities of separately existing cloning machines are
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λ and 1 − λ, respectively. In the same spirit, we can imagine a hybrid cloning ma-

chine which is a superposition of two cloning machines with appropriate amplitudes

[20]. When the corresponding probability λ takes value between 0 and 1 the resulting

combined cloning machines can be identified as a ‘Hybrid Cloning Machine’ (HCM).

Therefore, one can construct hybrid cloning machine by combining different existing

cloning transformations. Our objective is to study the behavior of such types of Hy-

brid cloning machines. Also, we would like to see if there is any improvements in the

fidelity or average fidelity of cloning under some special combinations. The present

work is organized as follows. In section 2, for the sake of completeness we recapitulate

all the different existing quantum cloning machines like Wootters-Zurek (WZ) quan-

tum cloning machine, Buzek-Hillery (BH) quantum cloning machine, Phase Covariant

quantum cloning machine, Pauli Asymmetric quantum cloning machines and Universal

Anti cloning machine. In section 3, we study the combination of such types of cloning

machines which gives state dependent hybrid quantum cloning machine. We show here

that the state dependent hybrid quantum cloning machine produces better quality copy

for only four input states. In section 4, we study the state independent hybrid quantum

cloning machines. Interestingly, we are able to construct here an universal asymmetric

hybrid quantum cloning machine whose fidelity of copying lie in the neighborhood of

the optimal fidelity 5
6 . Then the conclusion follows.

2 Descriptions of existing quantum cloning machines

For the sake of completeness, in this section we briefly discuss about some existing

quantum cloning machines. Then we study the different combinations of these quan-

tum cloners known as hybrid quantum cloners in the next section.
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2.1 The Wootters-Zurek (W-Z) Cloning Machine:

The Wootters and Zurek (W-Z) quantum cloning machine is a state- dependent one

because it works perfectly for some inputs and badly for some other. It is defined by

the following transformations. In the computational basis states |0〉 and |1〉 it is given
by

|0〉|Q〉 −→ |0〉|0〉|Q0〉 (1)

|1〉|Q〉 −→ |1〉|1〉|Q1〉. (2)

Unitarity of the transformation gives

〈Q|Q〉 = 〈Q0|Q0〉 = 〈Q1|Q1〉 = 1. (3)

Let us now consider purely superposition state given by

|χ〉 = α|0〉 + β|1〉. (4)

For simplicity, we will assume that the probability amplitudes are real and α2+β2 = 1.

The density matrix of the state |χ〉 in the input mode is given by

ρid = |χ〉〈χ| = α2|0〉〈0| + αβ|0〉〈1| + αβ|1〉〈0| + β2|1〉〈1|. (5)

After applying the cloning transformation (1-2) the arbitrary quantum state (4) takes

the form

|ψout〉 = α|0〉|0〉|Q0〉+ β|1〉|1〉|Q1〉. (6)

If it is assumed that two copying machine states |Q0〉 and |Q1〉 are orthonormal, then

the reduced density operator ρ
(out)
ab is given by

ρ
(out)
ab = Trx[ρ

(out)
abx ] = α2|00〉〈00| + β2|11〉〈11|. (7)

The reduced density operators describing the original and the copy mode are given by

ρ(out)a = Trb[ρ
(out)
ab ] = α2|0〉〈0| + β2|1〉〈1|, (8)

ρ
(out)
b = Tra[ρ

(out)
ab ] = α2|0〉〈0| + β2|1〉〈1|. (9)
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The copying quality, i.e, the distance between the density matrix of the input state ρ
(id)
a

and the reduced density matrices ρ
(out)
a , (ρ

(out)
b ) of the output states can be measured

by Hilbert-Schmidt norm. The Hilbert-Schmidt norm is defined as

Da = Tr[ρ(id)a − ρ(out)a ]2. (10)

In spite of having other measures of distance between two pure states Hilbert-Schmidt

norm is easier to calculate and also it serves as a good measure of quantifying the

distance between the pure states. Therefore, we have

Da = 2α2β2 = 2α2(1− α2) (11)

Since Da depends on α2, so we have to calculate the average distortion over all input

states, i.e., over all α2 lying between 0 and 1. Thus, the average distortion is given by

Da =

∫ 1

0
Da(α

2)dα2 =
1

3
. (12)

2.2 The Buzek-Hillery (B-H) Cloning Machine

The Buzek-Hillery cloning machine is a state independent one. This performs equally

well for all input system hence it is a universal cloner. The BH transformation is given

by

|0〉|Q〉 −→ |0〉|0〉|Q0〉+ [|0〉|1〉 + |1〉|0〉]|Y0〉, (13)

|1〉|Q〉 −→ |1〉|1〉|Q1〉+ [|0〉|1〉 + |1〉|0〉]|Y1〉. (14)

To maintain the unitarity of the transformation, the following conditions must hold:

〈Qi|Qi〉+ 2〈Yi|Yi〉 = 1, (i = 0, 1) (15)

〈Y0|Y1〉 = 〈Y1|Y0〉 = 0. (16)

It is further assumed that

〈Qi|Yi〉 = 0, (i = 0, 1) (17)

〈Q0|Q1〉 = 0. (18)
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The density operator of the output state after copying procedure is given by

ρ
(out)
ab = α2|00〉〈00|〈Q0|Q0〉+

√
2αβ|00〉〈+|〈Y1|Q0〉+

√
2αβ|+〉〈00|〈Q0|Y1〉

+[2α2〈Y0|Y0〉+ 2β2〈Y1|Y1〉]〈+|+〉+
√
2αβ|+〉〈11|〈Q1|Y0〉

+
√
2αβ|11〉〈+|〈Y0|Q1〉+ β2|11〉〈11|〈Q1 |Q1〉, (19)

where |+〉 = 1√
2
(|10〉+ |01〉). The reduced density operator describing the original mode

can be obtained by taking partial trace over the copy mode and it reads as

ρ(out)a = [α2 + ξ(β2 − α2)]|0〉〈0| + αβγ|0〉〈1| + αβγ|1〉〈0| + [β2 + ξ(β2 − α2)]|1〉〈1|, (20)

where 〈Y0|Y0〉 = 〈Y1|Y1〉 ≡ ξ and 〈Y0|Q1〉 = 〈Q0|Y1〉 = 〈Q1|Y0〉 = 〈Y1|Q0〉 = η
2 .

The density operator ρ
(out)
b describing the copy mode is exactly same as the density

operator ρ
(out)
a describing the original mode. Now the Hilbert Schmidt norm for the

density operators ρ
(id)
a and ρ

(out)
a is given by

Da = 2ξ2(4α4 − 4α2 + 1) + 2α2β2(η − 1)2 (21)

with 0 ≤ ξ ≤ 1
2 and 0 ≤ η ≤ 2

√

ξ(1− 2ξ) ≤ 1√
2
which follows from Schwarz inequality.

The main criterion in their work was to look out for a copying machine such that all input

states are copied equally well, i.e, the Hilbert Schmidt norm Da must be independent of

the parameter α2. Thus, the relation between the parameters ξ and η can be determined

from the condition

δDa

δα2
= 0 =⇒ η = 1− 2ξ. (22)

Using equation (22), equation (21) reduces to

Da = 2ξ2. (23)

The value of the parameter ξ can be determined from the second condition assumed

for the universality criterion of cloning machine, i.e., the distance between two mode

density operators ρ
(id)
ab and ρ

(out)
ab is input state independent. Mathematically,

δD2
ab

δα2
= 0, (24)
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where D2
ab = Tr[ρ

(out)
ab − ρ(id)ab ]2. Solving the equation (24) we find ξ = 1

6 . For this value

of ξ the norm D2
ab is independent of α2 and its value is equal to 2

9 . For ξ = 1
6 , the

deviation of the output from the input is given by

Da =
1

18
. (25)

2.3 Phase-covariant quantum cloning machine

Phase covariant quantum cloning machine [13] can be defined as

|0〉|Σ〉|Q〉| −→ ((
1

2
+

1√
8
)|0〉|0〉 + (

1

2
− 1√

8
)|1〉|1〉)| ↑〉+ 1

2
|+〉| ↓〉, (26)

|1〉|Σ〉|Q〉| −→ ((
1

2
+

1√
8
)|1〉|1〉 + (

1

2
− 1√

8
)|0〉|0〉)| ↓〉+ 1

2
|+〉| ↑〉. (27)

The quantum cloning machine defined above can copy the equatorial states such as

|0〉+eiφ|1〉√
2

with a fidelity F = 1
2 + 1√

8
which is slightly higher than the optimal bound

achievable for universal quantum cloning. The important property of this class that

allows for this higher fidelity is that the coefficients have equal norm. Due to this prop-

erty a state dependent term in the final density matrix of the clones in the cloning

transformation becomes automatically state independent, hence no need for making its

coefficient vanish by tuning the parameters of the cloning transformation. It had been

already shown that if the input state contains only one unknown parameter, then we

are able to construct a cloning machine which improves the fidelity.

2.4 Universal asymmetric Pauli cloning machine

Asymmetric cloning transformation [11, 12] is given by

|0〉|Σ〉|Q〉| −→ (
1

√

1 + p2 + q2
)(|0〉|0〉| ↑〉+ (p|0〉|1〉 + q|1〉|0〉)| ↓〉, (28)

|1〉|Σ〉|Q〉| −→ (
1

√

1 + p2 + q2
)(|1〉|1〉| ↓〉+ (p|1〉|0〉 + q|0〉|1〉)| ↑〉. (29)

Pauli cloning machines (transformations) is nothing but a family of asymmetric cloning

machines that generates two non-identical approximate copies of a single quantum bit,
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each output qubits emerging from a Pauli channel [12]. The asymmetric quantum

cloning machine play an important role in the situation in which one of the clones need

to be a bit better than the other.

parameter (p) (F1)PCM = (p2+1)
2(p2−p+1) (F2)PCM = (p2−2p+2)

2(p2−p+1) Difference between qualities

of the two copies

(F1)PCM ∼ (F2)PCM

0.0 0.50 1.00 0.50

0.1 0.55 0.99 0.44

0.2 0.62 0.98 0.36

0.3 0.69 0.94 0.25

0.4 0.76 0.89 0.13

0.5 0.83 0.83 0.00 (Symmetric copies)

0.6 0.89 0.76 0.13

0.7 0.94 0.69 0.25

0.8 0.98 0.62 0.36

0.9 0.99 0.55 0.44

1.0 1.00 0.50 0.50

The above table represents the quality of the two different outputs from asymmet-

ric Pauli cloning machine in terms of the fidelity for different values of the parameter

p. We find that when p = 0 or p = 1, one of the output is totally undisturbed i.e.

contains full information of the quantum state but the other output contains just 50

percent of the total information. For p = 0.5, the Pauli cloning machine reduces to B-H

symmetric quantum cloning machine. We also observe here that the Pauli quantum

cloning machine gives better quality asymmetric copies when p = 0.4 and p = 0.6.
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2.5 Universal anti- cloning machine

Few years earlier, Gisin and Popescu [10] discovered an important fact that quantum

information is better stored in two anti-parallel spins as compared to two parallel spins.

This fact gave birth to a new type of cloning machine called anti-cloning machine [9, 10]

which generates two outputs, one of the output has the same direction as the input and

the other output has direction opposite to the input. Song and Hardy [9] constructed

a universal quantum anti-cloner which takes an unknown quantum state just as in

quantum cloner but its output as one with the same copy while the second one with

opposite spin direction to the input state. For the Bloch vector, an input n, quantum

anti-cloner would have the input as 1
2 (1+n.σ), then it generates two outputs,12(1+ηn.σ)

and 1
2(1 − ηn.σ), where 0 ≤ η ≤ 1 is the shrinking factor and the fidelity is defined as

F = 〈n|ρout|n〉 = 1
2(1 + η). If spin flipping were allowed then anti-cloner would have

the same fidelity as the regular cloner since one could clone first then flip the spin of

the second copy. However spin flipping of an unknown state is not allowed in quantum

mechanics. They also showed that the quantum state can be anti-cloned exactly with

non-zero probability.

The universal anti-cloning transformation is given by

|0〉|Σ〉|Q〉 −→
√

1

6
|0〉|0〉| ↑〉+ ((

1√
2
)e
icos−1( 1√

3
)|0〉|1〉 − 1√

6
|1〉|0〉)| →〉+

1√
6
|1〉|1〉| ←〉, (30)

|1〉|Σ〉|Q〉 −→
√

1

6
|1〉|1〉| →〉+ ((

1√
2
)e
icos−1( 1√

3
)|1〉|0〉 − 1√

6
|0〉|1〉)| ↑〉+

1√
6
|0〉|0〉| ↓〉, (31)

where| ↑〉,| ↓〉,| →〉,| ←〉 are orthogonal machine states. The fidelity of universal anti-

cloner is same as the fidelity of measurement which is equal to 2
3 [8].
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3 State dependent hybrid cloning transformation

In this section, we study two state dependent cloning machines and later we find that

their average fidelities are greater than the fidelity of the optimal universal quantum-

cloning machine. Since the quality of the state dependent cloning machine depends

on the input state given to the cloning machine so naturally one may ask a question

why this type of cloning machine is important for study? Here we give two reasons for

this question. First, the importance of the state dependent cloner lies in the eavesdrop-

ping strategy on some quantum cryptographic system. For example, if the quantum key

distribution protocol is based on two non-orthogonal states [14], the optimal state depen-

dent cloner can clone the qubit in transit between a sender and a receiver. The original

qubit can then be re-sent to the receiver and the clone can stay with an eavesdropper

who by measuring it can obtain some information about the bit value encoded in the

original. The eavesdropper may consider storing the clone and delaying the actual mea-

surement until any further public communication between the sender and the receiver

takes place. This eavesdropping strategy has been discussed in Ref. [15, 16]. Second,

the state dependent cloning machines may play an important role when the cloning ma-

chine produces a copy of an arbitrary input state with better fidelity on average than

the optimal universal quantum cloning machine. Thus an interesting problem would

be to construct a state dependent cloning machine whose average fidelity of copying is

greater than the optimal value 5
6 .

B-H type cloning transformation: B-H cloning transformation generally indicates

the optimal universal quantum cloning transformation but in this paper, we relax one

condition of universality of B-H cloning transformation and hence we rename the B-H

cloning transformation as B-H type cloning transformation. Therefore, although B-H

type cloning transformation is structurally same as the universal B-H cloning transfor-

mation but it is different in the sense that this type of transformation is state dependent.

State dependent ness of the cloning machine arises because of the relaxation of the con-

dition ∂Dab

∂α2 = 0.
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3.1 Hybridization of two B-H type cloning transformation:

Here we investigate a new kind of cloning transformation that can be obtained by

combining two different BH type cloning transformations. This may be given by

|ψ〉|Σ〉|Q〉 ⊗ |n〉 −→
√
λ[|ψ〉|ψ〉|Qψ〉+ (|ψ〉|ψ〉+ |ψ〉|ψ〉)|Yψ〉]|i〉

+(
√
1− λ)[|ψ〉|ψ〉|Q′

ψ〉+ (|ψ〉|ψ〉+ |ψ〉|ψ〉)|Y ′
ψ〉]|j〉. (32)

Unitarity of the transformation gives

λ(〈Qψ |Qψ〉+ 2〈Yψ|Yψ〉) + (1− λ)(〈Q′
ψ|Q′

ψ〉+ 2〈Y ′
ψ |Y ′

ψ〉) = 1, (33)

2λ(〈Yψ|Yψ̄〉) + 2(1− λ)(〈Y ′
ψ |Y ′

ψ̄
〉) = 0. (34)

Equations (33) and (34) is satisfied for all values of λ(0 < λ < 1) if

〈Qψ|Qψ〉+ 2〈Yψ|Yψ〉 = 〈Q́ψ|Q́ψ〉+ 2〈Ýψ|Ýψ〉 = 1 (35)

〈Yψ|Yψ〉 = 〈Ýψ|Ýψ〉 = 0 (36)

Further we assume that

〈Qψ|Yψ〉 = 0 = 〈Qψ|Qψ〉. (37)

Let |χ〉 = α|0〉 + β|1〉 with α2 + β2 = 1, be the input state. The cloning transforma-

tion (32) copy the information contained in the input state |χ〉 approximately into two

identical states described by the density operators ρ
(out)
a and ρ

(out)
b , respectively. The

reduced density operator ρ
(out)
a is given by

ρ(out)a = |0〉〈0|[α2 + (β2〈Y ′
1 |Y ′

1〉 − α2〈Y ′
0 |Y ′

0〉) + λ(β2〈Y1|Y1〉 − α2〈Y0|Y0〉 − β2〈Y ′
1 |Y ′

1〉+

α2〈Y ′
0 |Y ′

0〉)] + |0〉〈1|[αβ(〈Q′
1 |Y ′

0〉+ 〈Y ′
1 |Q′

0〉) +

λαβ(〈Q1|Y0〉+ 〈Y1|Q0〉 − 〈Q′
1|Y ′

0〉 − 〈Y ′
1 |Q′

0〉)] +

|1〉〈0|[αβ(〈Q′
1 |Y ′

0〉+ 〈Y ′
1 |Q′

0〉) + λαβ(〈Q1|Y0〉+
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〈Y1|Q0〉 − 〈Q′
1|Y ′

0〉 − 〈Y ′
1 |Q′

0〉)] +

|1〉〈1|[β2 − (β2〈Y ′
1 |Y ′

1〉 − α2〈Y ′
0 |Y ′

0〉) + λ(β2〈Y1|Y1〉 − α2〈Y0|Y0〉 −

β2〈Y ′
1 |Y ′

1〉+ α2〈Y ′
0 |Y ′

0〉)]. (38)

The other output state described by the density operator ρ
(out)
b looks exactly the same

as ρ
(out)
a .

Let 〈Y0|Y0〉 = 〈Y1|Y1〉 = ξ, 〈Q1|Y0〉 = 〈Y0|Q1〉 = 〈Q0|Y1〉 = 〈Y1|Q0〉 = η
2 ,

〈Y ′
0 |Y ′

0〉 = 〈Y ′
1 |Y ′

1〉 = ξ′ and 〈Q′
1|Y ′

0〉 = 〈Y ′
0 |Q′

1〉 = 〈Q′
0|Y ′

1〉 = 〈Y ′
1 |Q′

0〉 = η′

2

with 0 ≤ ξ(ξ′) ≤ 1 and 0 ≤ η(η′) ≤ 2
√

ξ(1− 2ξ)(2
√

ξ′(1− 2ξ′)) ≤ 1√
2
.

Using above conditions, equation (38) can be rewritten as

ρ(out)a = |0〉〈0|[α2 + ξ′(β2 − α2) + λ(ξ − ξ′)(β2 − α2)] + |0〉〈1|[αβ(η′ + λ(η − η′))]

+|1〉〈0|[αβ(η′ + λ(η − η′))] + |1〉〈1|[β2 − ξ′(β2 − α2)− λ(ξ − ξ′)(β2 − α2)]. (39)

To investigate how well our hybrid cloning machine copy the input state, we have to

calculate the fidelity. Therefore, the fidelity FHCM is defined by

FHCM = 〈χ|ρ(out)a |χ〉 = α4[(1 − ξ′)− λ(ξ − ξ′)] + β4[(1 − ξ′)− λ(ξ − ξ′)]

+2α2β2[ξ′ + λ(ξ − ξ′) + η′ + λ(η − η′)]. (40)

Now we get relationship between ξ, ξ′, η, η′ by solving the equation δFHCM

δα2 = 0

Therefore δFHCM

δα2 = 0 implies that we must have

η′(1− λ) + ηλ = 1− 2ξ′ − 2λ(ξ − ξ′). (41)

Using (41), equation (40) reduces to

FHCM = (1− ξ′)− λ(ξ − ξ′). (42)

Now the distance between the two mode density operators ρ
(out)
ab and ρ

(id)
ab = ρ

(id)
a ⊗ρ(id)b

is given by

Dab = Tr[ρ
(out)
ab − ρ(id)ab ]2

= U2
11 + 2U2

12 + 2U2
13 + U2

22 + 2U2
23 + U2

33, (43)
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where

U11 = α4 − α2[λ(1− 2ξ) + (1− λ)(1− 2ξ′)],

U12 = U21 =
√
2α3β −

√
2αβ(η

λ

2
+ (1− λ)η

′

2
),

U13 = U31 = α2β2,

U22 = 2α2β2 − (2ξλ+ 2ξ′(1− λ)),

U23 = U32 =
√
2αβ3 −

√
2αβ(η

λ

2
+ (1− λ)η

′

2
),

U33 = β4 − β2[λ(1 − 2ξ) + (1− λ)(1 − 2ξ′)]. (44)

It is interesting to see that the transformation (32) can behave as a state dependent

cloner if we relax the condition δDab

δα2 = 0. Therefore, it is natural to expect that the

machine parameters depends on the input state. Thus, our prime task is to find the

relationship between the machine parameters and the input state that minimizes the

distortion Dab. Now we will get an interesting result if we fix any one of the machine

parameters ξ or ξ′ as 1
6 . Without any loss of generality we can fix ξ′ = 1

6 . In doing so,

the cloning transformation (32) reduces to the combination of B-H optimal universal

cloning machine and the B-H type cloning machine.

Now, substituting ξ′ = 1
6 in (44) and using (41), equation (43) can be rewritten as

Dab = V 2
11 + 2V 2

12 + 2V 2
13 + V 2

22 + 2V 2
23 + V 2

33, (45)

where

V11 = α4 − α2[λ(1 − 2ξ) + (1− λ)(2
3
)],

V12 = V21 =
√
2α3β −

√
2αβ(

1

3
− λ(ξ − 1

6
)),

V13 = V31 = α2β2,

V22 = 2α2β2 − (2ξλ+ (
1

3
)(1 − λ)),

V23 = V32 =
√
2αβ3 −

√
2αβ(

1

3
− λ(ξ − 1

6
)),

V33 = β4 − β2[λ(1− 2ξ) + (1− λ)(2
3
)]. (46)
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Now we are in a position to determine the relationship between the machine parameter

and the input state that minimizes the distortion Dab. To obtain the minimum value

of Dab for given α and λ, we solve the equation

δDab

δξ
= 0 =⇒ ξ =

(9α2β2 − 2(1 − λ))
12λ

, provided λ 6= 0. (47)

Now, the cloning machine defined by those parameters common to the whole family of

state that one wants to clone. Therefore, it is clear from equation (47) that the quantum

cloning machine can be applied on the family of states such that α2β2 = constant.

That means the cloning machine can be applied on just four states |ψ±〉1 = α|0〉 ±
β|1〉, |ψ±〉2 = α|1〉 ± β|0〉.
Since the value of the machine parameter ξ cannot be negative, so the parameter λ take

values lying in the interval [1− 9α2(1−α2)
2 ] < λ < 1.

Also

δ2Dab

δξ2
= 16λ2 > 0. (48)

Therefore, the equation (47) represents the required relationship between the machine

parameter and the input state which minimizes Dab and the minimum value of Dab is

given by

(Dab)min = 2α2β2 − 9α4β4

2
(49)

which depends on α2 but not on λ.

Substituting ξ = (9α2(1−α2)−2(1−λ))
12λ and ξ′ = 1

6 in equation (42), we get

FHCM = 1− 3α2β2

4 .

Input state (α2) Parameter λ Machine parameter (ξ) (Dab)min FHCM

0.1 or 0.9 (0.595, 1.0) (0.0, 0.0675) 0.14 0.93

0.2 0r 0.8 (0.280, 1.0) (0.0, 0.1200) 0.21 0.88

0.3 or 0.7 (0.055, 1.0) (0.0, 0.1575) 0.22 0.84

0.4 or 0.6 (0.000, 1.0) (0.0, 0.1800) 0.22 0.82

0.5 (0.000, 1.0) (0.0, 0.1875) 0.22 0.81
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The above table shows that there exists several quantum cloning machines (for different

values of ξ) which can clone the four states {|ψ±〉1, |ψ±〉2} with the same fidelity. For ex-

ample, If the input states are chosen from the set {
√
0.1|0〉±

√
0.9|1〉,

√
0.9|0〉±

√
0.1|1〉},

then corresponding to different values of the machine parameter ξ (0 < ξ < 0.0675),

there exists different quantum cloners which clone the above states, each with the fidelity

0.93.

3.2 Hybridization of B-H type cloning transformation and phase-

covariant quantum cloning transformation

Now, we show that the combination of B-H type cloning transformation and the phase-

covariant quantum cloning transformation gives a state dependent quantum cloning

transformation which copy the input state having two unknown parameters with average

fidelity greater than 1
2 +

√

1
8 .

The Hybrid cloning transformation is given by

|0〉|Σ〉|Q〉|n〉 −→
√
λ[|0〉|0〉|Q0〉+ (|0〉|1〉 + |1〉|0〉)|Y0〉]|i〉

+(
√
1− λ)[((1

2
+

1√
8
)|0〉|0〉 + (

1

2
− 1√

8
)|1〉|1〉)| ↑〉+ 1

2
|+〉| ↓〉)]|j〉, (50)

|1〉|Σ〉|Q〉|n〉 −→
√
λ[|1〉|1〉|Q1〉+ (|0〉|1〉 + |1〉|0〉)|Y1〉]|i〉

+(
√
1− λ)[((1

2
+

1√
8
)|1〉|1〉 + (

1

2
− 1√

8
)|0〉|0〉)| ↓〉+ 1

2
|+〉| ↑〉)]|j〉. (51)

When λ = 1 cloning transformation reduces to B-H type cloning transformation and

when λ = 0 it takes the form of phase-covariant quantum cloning transformation.

The cloning machine (52-53) approximately copy the information of the input state |χ〉
given in (4) into two identical states described by the reduced density operator

ρ = λ[(1 − ξ)|χ〉〈χ| + ξ|χ〉〈 χ|] + (1− λ)[(1
2
+

1√
8
)|χ〉〈χ| + (

1

2
− 1√

8
)|χ〉〈 χ|] (52)

where |χ̄〉 is an orthogonal state to |χ〉. Now, the fidelity is given by

F1 = 〈χ|ρ|χ〉 = (
1

2
+

1√
8
) + λ(

1

2
− 1√

8
− ξ) (53)
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The hybrid quantum cloning machine constructed by combining the B-H type cloning

transformation and phase-covariant quantum cloning transformation is state dependent.

State dependent ness condition arises from the fact that B-H type cloning transforma-

tion is state dependent. Consequently, the fidelity F1 depends on the input state as

it depends on the machine parameter ξ(α2). We can get the relationship between the

machine parameter ξ associated with the B-H type cloning machine and the input state

α2 by putting λ = 1 in equation (47). Therefore, the dependence of ξ on α2 can be

expressed as ξ(α2) = 3α2(1−α2)
4 .

From the argument given in section (3.1), we find that the hybrid quantum cloning

machine (B-H type cloning transformation + phase covariant quantum cloning trans-

formation) clone the same four states {|ψ±〉1, |ψ±〉2}. Also there is no improvement

in the quality of cloning of these four states. Therefore, this hybrid quantum cloning

machine does not give anything new because it neither involve in cloning of new family

of states nor it gives any improvement in the fidelity of cloning.

4 State independent hybrid cloning transformation

In this section, we study one symmetric and two asymmetric universal hybrid quantum

cloning machines.

4.1 Hybridization of two BH type cloning transformations

In the preceding section, we find that the quantum cloning machine obtained by combin-

ing two BH type cloning transformations is state dependent but in this section we will

observe that a proper combination of two BH type cloning transformations can serve

as a state independent cloner also. A hybrid quantum cloning machine (32) becomes

state independent or universal if the fidelity FHCM and the deviation Dab, defined in

section 3, both are state independent. From equation (42), it is clear that FHCM is

state independent. Therefore, the only remaining task is to show the independence of

the deviation Dab. We will find that the deviation Dab is state independent if there
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exists a relationship between the parameter λ and the machine parameters ξ, ξ′. Dab is

input state independent if,

δDab

δα2
= 0 =⇒ [2(λ(1 − 2ξ) + (1− λ)(1 − 2ξ′))− 3]2

−[2(ηλ − (1 − λ)η′)− 2]2 + 8[2ξλ + 2ξ′(1− λ)]− 5 = 0. (54)

Using equation (41) in equation (54), we get

λ =
(6ξ′ − 1)

6(ξ′ − ξ) , (55)

provided ξ 6= ξ′.

Using the value of λ in (42), we get

FHCM =
5

6
. (56)

If ξ = ξ′ , then there is nothing special about the transformation (32) because if ξ = ξ′

holds then the transformation (32) simply reduces to B-H cloning machine. The special

feature of the equation (55) is that it makes the transformation (32) state independent

for all values of ξ and ξ′(provided ξ 6= ξ′). This characteristic of the newly defined

cloning machine takes it into the field of universal cloning machines and creates its

identification as a universal cloner. The introduced universal cloning machine is opti-

mal also in the sense that the fidelity of the cloning machine is equal to 5
6 . Although

the machine is universal and optimal for an unknown quantum state but it is different

from B-H cloning machine. It is different in the sense that B-H cloning machine is state

independent for just only one value of the machine parameter ξ = 1
6 while the cloning

machine defined by (32) works as a universal cloner for all values of ξ and ξ′(provided

ξ 6= ξ′).
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4.2 Hybridization of optimal universal symmetric B-H cloning trans-

formation and optimal universal asymmetric Pauli cloning trans-

formation

Another asymmetric quantum cloning machine can be constructed by applying hy-

bridization technique. Therefore using the hybridization procedure we can construct

universal asymmetric quantum cloning machine by combining universal symmetric B-H

cloning transformation and optimal universal asymmetric Pauli cloning transformation.

The Hybrid cloning transformation is given by

|0〉|Σ〉|Q〉|n〉 −→
√
1− λ[

√

2

3
|0〉|0〉| ↑〉+

√

1

6
(|0〉|1〉 + |1〉|0〉)| ↓〉]|i〉

+
√
λ[(

1
√

1 + p2 + q2
)(|0〉|0〉| ↑〉+ (p|0〉|1〉 + q|1〉|0〉)| ↓〉)]|j〉, (57)

|1〉|Σ〉|Q〉|n〉 −→
√
1− λ[

√

2

3
|1〉|1〉| ↓〉+

√

1

6
(|0〉|1〉 + |1〉|0〉)| ↑〉]|i〉

+
√
λ[(

1
√

1 + p2 + q2
)(|1〉|1〉| ↓〉+ (p|1〉|0〉 + q|0〉|1〉)| ↑〉)]|j〉, (58)

where p + q =1.

After taking |χ〉 given in (4) as input state by the cloning machine, the two asymmetric

clones emerges as output which are described by the reduced density operators ρ1 and

ρ2

ρ1 = λ[(
1

1 + p2 + q2
)((1 − q2 + p2)|χ〉〈χ|+ q2I)] + (1− λ)[5

6
|χ〉〈χ|+ 1

6
|χ〉〈χ|], (59)

ρ2 = λ[(
1

1 + p2 + q2
)((1− p2 + q2)|χ〉〈χ|+ p2I)] + (1− λ)[5

6
|χ〉〈χ|+ 1

6
|χ〉〈χ|]. (60)

Let F1 and F2 denote the fidelities of the two asymmetric clones.

F1 =
5

6
+ (

λ

2
)[

(p2 + 1)

(p2 − p+ 1)
− 5

3
], (61)

F2 =
5

6
+ (

λ

2
)[
(p2 − 2p+ 2)

(p2 − p+ 1)
− 5

3
]. (62)

From equation (61) and (62), we can observe that the Hybrid quantum cloning machine

reduces to B-H state independent quantum cloning machine if λ→ 0 and 0 ≤ p ≤ 1 or
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if λ→ 1 and p = 1
2 .

Next our task is to show that if F1 >
5
6 then F2 <

5
6 for all λ′s lying between 0 and 1

and vice-versa. Therefore, for 0 < λ < 1, we can find F1 >
5
6 if (p2+1)

(p2−p+1) >
5
3

i.e. if (2p − 1)(p − 2) < 0

i.e. if (2p − 1) > 0

i.e. if p >
1

2
.

Now we are going to show that if p > 1
2 then F2 <

5
6 . If possible, let F2 >

5
6 for p > 1

2 .

Therefore, we have

F2 >
5

6
=⇒ (p2 − 2p + 2)

(p2 − p+ 1)
>

5

3

=⇒ (2p− 1)(p + 1) < 0

=⇒ (2p− 1) < 0, Since p+ 1 > 0

=⇒ p <
1

2

which contradicts our assumption. Hence F2 <
5
6 for p > 1

2 . Therefore, we can conclude

that the fidelities given in (61) and (62) cannot cross the optimal limit 5
6 simultaneously.

Next we construct a table below in which we show that if we made the quality of one of

the output better than the optimal quality then how much far away the quality of the

other copy from the optimal one.
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p λ F1 = 5
6 + λ

2 F2 =
5
6 +

λ
2 Difference

[( p2+1
2(p2−p+1))−

5
3 ] [(p

2−2p+2
p2−p+1 )−

5
3 ] between qualities

of the two copies

[0.0,1.0] 0.0 0.83 0.83 0.00 (symmetric copies)

0.0 [0.1,0.9] [0.80,0.53] [0.85,0.98] [0.05,0.45]

0.1 [0.1,0.9] [0.81,0.58] [0.85,0.98] [0.04,0.40]

0.2 [0.1,0.9] [0.81,0.64] [0.85,0.96] [0.04,0.32]

0.3 [0.1,0.9] [0.82,0.70] [0.84,0.93] [0.02,0.23]

0.4 [0.1,0.9] [0.83,0.77] [0.84,0.89] [0.01,0.12]

0.5 [0.1,0.9] 0.83 0.83 0.0 (Symmetric copies)

0.6 [0.1,0.9] [0.84,0.89] [0.83,0.77] [0.01,0.12]

0.7 [0.1,0.9] [0.84,0.93] [0.82,0.70] [0.02,0.23]

0.8 [0.1,0.9] [0.85,0.96] [0.81,0.64] [0.04,0.32]

0.9 [0.1,0.9] [0.85,0.98] [0.81,0.58] [0.04,0.40]

[0.0,1.0] 1.0 (F1)PCM (F2)PCM (F1)PCM ∼ (F2)PCM

The above table represents the qualities of the asymmetric copies of the hybrid cloning

machine. We note that the fidelity of the hybrid quantum cloning machine (B-H cloner

+ Pauli cloner) depends on the parameter p and λ . From table we observe that one of

the output (F1)HCM behave as a decreasing function for p = 0.0 to p = 0.4 and for all

values of λ lying between 0 and 1. At the same time, another output of the asymmetric

cloning machine (F2)HCM behaves as an increasing function for p = 0.0 to p = 0.4

and for all values of λ lying between 0 and 1. The role of the fidelities (F1)HCM and

(F2)HCM are swapped for p = 0.6 to p = 0.9 and for all values of λ lying between 0

and 1. Here we observe that the asymmetric hybrid cloning machine reduces to B-H

symmetric cloning machine in two cases: (i) when λ = 0 and 0 ≤ p ≤ 1 and (ii)when

p = 0.5 and 0.1 ≤ λ ≤ 0.9 . Our asymmetric hybrid cloner also reduces to asymmetric

Pauli cloner when λ = 1.0 and 0 ≤ p ≤ 1.
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4.3 Hybridization of universal B-H cloning transformation and uni-

versal anti- cloning transformation

Now we introduce an interesting hybrid quantum-cloning machine, which is a combi-

nation of universal B-H cloning machine and a universal anti-cloning machine. The

introduced cloning machine is interesting in the sense that it acts like anti-cloning ma-

chine. That means the spin direction of the outputs of the cloner are antiparallel. We

will show later that the newly introduced Hybrid cloning machine (B-H cloner + Anti-

cloner) serve as a better anti-cloner than the existing quantum anti-cloning machine [9].

Also we show that if the values of the machine parameter λ is in the neighborhood of 1

then the values of the two non-identical fidelities lies in the neighborhood of 5
6

Therefore the introduced anti-cloning transformation is defined by

|0〉|Σ〉|Q〉|n〉 −→
√
λ[

√

2

3
|0〉|0〉| ↑〉+

√

1

6
(|0〉|1〉 + |1〉|0〉)| ↓〉]|i〉 + (

√
1− λ)

[

√

1

6
|0〉|0〉| ↑〉+ ((

1√
2
)e
icos−1( 1√

3
)|0〉|1〉 − 1√

6
|1〉|0〉)| →〉+ 1√

6
|1〉|1〉| ←〉]|j〉,(63)

|1〉|Σ〉|Q〉|n〉 −→
√
λ[

√

2

3
|1〉|1〉| ↓〉+

√

1

6
(|0〉|1〉 + |1〉|0〉)| ↑〉]|i〉 + (

√
1− λ)

[

√

1

6
|1〉|1〉| →〉+ ((

1√
2
)e
icos−1( 1√

3
)|1〉|0〉 − 1√

6
|0〉|1〉)| ↑〉+ 1√

6
|0〉|0〉| ↓〉]|j〉, (64)

where | ↑〉, | ↓〉, | →〉, | ←〉 are orthogonal machine states.

The above defined cloning machine (63-64) produces two copies of the input state (4)

which are described by the reduced density operator in mode ‘a’ and mode ‘b’ is given

by

ρa = |0〉〈0|[λ(
5α2

6
+
β2

6
) + (1− λ)(2α

2

3
+
β2

3
)] + |0〉〈1|[λ2αβ

3
+ (1− λ)αβ

3
]

+|1〉〈0|[λ2αβ
3

+ (1− λ)αβ
3
] + |1〉〈1|[λ(5β

2

6
+
α2

6
) + (1− λ)(α

2

3
+

2β2

3
)], (65)

ρb = |0〉〈0|[λ(
5α2

6
+
β2

6
) + (1− λ)(α

2

3
+

2β2

3
)] + |0〉〈1|[λ2αβ

3
− (1− λ)αβ

3
]

+|1〉〈0|[λ2αβ
3
− (1− λ)αβ

3
] + |1〉〈1|[λ(5β

2

6
+
α2

6
) + (1− λ)(2α

2

3
+
β2

3
)]. (66)
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Let Fa and Fb denotes the fidelities of the two copies with opposite spin direction.

Therefore, the fidelities for two outputs are given by

Fa =
5λ

6
+

2(1− λ)
3

, Fb =
5λ

6
+

(1− λ)
3

. (67)

It is clear from equation (67) that the introduced anti- cloning machine is asymmetric in

nature, i.e., the hybrid quantum cloning machine resulting from Universal B-H cloning

machine and universal anti-cloning machine behaves as a asymmetric quantum cloning

machine for all values of the parameter λ lying between 0 and 1. The two different fi-

delities given in (67) of the anti-cloning machine (63-64) can approaches to the optimal

value 5
6 when the parameter λ approaches to one. Here we should note an important

fact that both the fidelities tends to 5
6 but not equal to 5

6 unless λ = 1. Hence the

fidelities Fa and Fb takes different values in the neighborhood of 5
6 when the values of

λ lying in the neighborhood of 1. For further illustration we construct a table below:

parameter (λ) Fa =
5λ
6 + 2(1−λ)

3 Fb =
5λ
6 + (1−λ)

3 Difference between qualities

of the two copies

Fa ∼ Fb
0.0 0.67 0.33 0.34

0.1 0.68 0.38 0.30

0.2 0.70 0.43 0.27

0.3 0.72 0.48 0.24

0.4 0.73 0.53 0.20

0.5 0.75 0.58 0.17

0.6 0.77 0.63 0.14

0.7 0.78 0.68 0.10

0.8 0.80 0.73 0.07

0.9 0.82 0.78 0.04

1.0 0.83 0.83 0.00 (Symmetric copies)



24

It is clear that both the fidelities of output copies with opposite spins are increas-

ing function of the parameter λ. Therefore, as λ increases, the values of the fidelities

Fa and Fb also increases and approaches towards the optimal cloning fidelity 0.83. The

above Table shows that when λ = 0, our Hybrid anti-cloner reduces to anti-cloner in-

troduced by Song and Hardy [9]. Also when λ = 1 , we observe that the copies with

opposite spin direction changes into the copies with same spin direction with optimal

fidelity.Therefore, we can conclude that the hybrid anti-cloner performs better than the

existing quantum anti-cloning machine.

5 Conclusion

In this paper we have studied two state dependent hybrid quantum-cloning machine and

three state independent hybrid quantum-cloning machine. We get few interesting results

after studying the hybrid quantum-cloning machine in detail. First, the combination of

a universal B-H quantum cloning machine and B-H type quantum cloning machine gives

a state dependent hybrid quantum cloning machine which copy only four input states

with maximum fidelity 0.93. Another hybrid state dependent quantum cloning machine

introduced in this paper is the combination of B-H type quantum cloning transformation

and phase-covariant quantum cloning transformation. But this type of hybrid quantum

cloning machine does not perform better than other state dependent quantum cloning

machine. Second, the hybridization of two B-H type cloning transformation also serve

as a state independent cloner with optimal fidelity 5/6 for all values of the machine pa-

rameters. This result is interesting in the sense that the original B-H quantum cloning

machine serve as a universal cloner for just only one value of the machine parameter

but the introduced hybrid cloner (32) acts as a state independent cloner for all values of

the machine parameters lying in the given range. Third, we construct here an univer-

sal hybrid anti-cloning machine by combining the universal B-H cloning transformation

and universal anti-cloning transformation. This machine copies an arbitrary input state

with different fidelities of the copies with opposite spin direction. Although the fidelities
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are different but the values of the fidelities lie in the neighborhood of the optimal value

5/6 provided the machine is constructed in such a way that the parameter λ takes the

value close to 1. Thus, our hybrid anti-cloner can clone an arbitrary input state into

two copies with antiparallel spin direction and improves the quality of copy upto the

optimal quality. Hence collecting all the given arguments above, we can say that Hybrid

quantum cloner performs better than any other existing individual cloners.
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