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Abstract

Algorithmic cooling is a potentially important technique for making
scalable NMR quantum computation feasible in practice. Given the con-
straints imposed by this approach to quantum computing, the most likely
cooling algorithms to be practicable are those based on simple reversible
polarization compression (RPC) operations acting locally on small num-
bers of bits. Several different algorithms using 2- and 3-bit RPC oper-
ations have appeared in the literature, and these are the algorithms I
consider in this note. Specifically, I show that the RPC operation used
in all these algorithms is essentially a majority vote of 3 bits, and prove
the optimality of the best such algorithm. I go on to derive some theoret-
ical bounds on the performance of these algorithms under some specific
assumptions about errors.

1 Background

Consider a probabilistic bit that equals 0 with probability p. Define the bias of
the bit to be

B = p− (1− p) = 2p− 1,

which is the difference between the probability that the bit equals 0 and the
probability that the bit equals 1. (The symbol “ε” is usually used to denote
the bias in the literature on algorithmic cooling; I prefer to reserve this symbol
for error rates.) The problem addressed by algorithmic cooling is the following.
Given some number of bits initially having a common bias Bi > 0, distill out
some smaller number of bits having greater bias. This should be accomplished
without the need for any pure ancillary bits initialized to 0, since preparing
such initialized bits is the problem to be solved. Also, we should assume that
we cannot perform measurements.

Algorithmic cooling has significant relevance to quantum computing, because for
physical systems like nuclear spins controlled using nuclear magnetic resonance
(NMR), obtaining a pure initial state can be very challenging. It is this fact that
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has motivated recent research on the implementation of algorithmic cooling in
NMR quantum computers, as well as theoretical investigations of the efficiency
and performance of cooling algorithms.

Algorithmic cooling in the context of NMR quantum computation first appeared
in [SV99]. The authors presented a method for implementing reversible polariza-
tion compression (RPC). The idea of RPC is to use reversible logic to implement
a permutation on the (classical) states of n bits, so that the bias of some of the
bits is increased, while the bias of others is decreased (this is closely connected
to data compression). Unfortunately RPC is theoretically limited by Shannon’s
Bound, which says that the entropy of a closed system cannot decrease.

An alternative algorithm was proposed in [BMRVV] to enable cooling below the
Shannon bound. The idea is to use a second register of bits that quickly relax to
the initial bias Bi. Call these the relaxation bits, and refer to the bits on which we
perform the RPC operation as the compression bits. The idea is to first use RPC
to increase the bias of some of the compression bits, while decreasing the bias of
the other compression bits. Then the hotter compression bits (i.e. those having
decreased bias) are swapped with the relaxation bits, where they will quickly
relax back to the initial bias Bi. Repeating this procedure effectively pumps
heat out of the some of the compression bits, cooling them to bias much higher
than Bi. This system is analogous to a kitchen refrigerator, where the relaxation
bits behave like the radiator on the back of the refrigerator, dumping the heat
taken from the refrigerator compartment out into the surrounding environment.
This approach is often referred to as “heat-bath algorithmic cooling”, and the
relaxation bits are often referred to as the “heat bath”.

Another approach to heat-bath algorithmic cooling was introduced in [FLMR04].
Their algorithm has a simpler analysis than the algorithm in [BMRVV], and
gives a better bound on the size of molecule required to cool a single bit.

In [SMW05] the physical limits of heat-bath cooling are explored. In their anal-
ysis, the assumption is that the basic operations can be implemented perfectly,
without errors. Even given this assumption, the authors show that if the heat
bath temperature is above a certain temperature threshold, no cooling proce-
dure can initialize the system sufficiently for quantum computation. A heat-bath
cooling algorithm called the “partner pairing algorithm” (PPA) is introduced
to derive bounds on the best possible performance of algorithmic cooling with
a heat bath. The PPA performs better than the previous algorithms, but it
is unclear whether implementing the required permutations will be realistic in
practice. In this paper I will focus on cooling algorithms based on repeated
application of simple 2 or 3-bit RPC steps.

2 Architecture

To be useful for NMR quantum computing, we should implement cooling al-
gorithms on a register of quantum bits all having some initial bias Bi, without
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access to any “clean” ancillary bits. Further, we should be careful about how
much “local control” we assume is directly provided by the system. In [SV98],
four primitive computational operations are proposed as being supported by
NMR quantum computers. For implementing the cooling algorithm, the first
two of these suffice:

o1) Cyclically shift the n bits clockwise or counterclockwise one position.

o2) Apply an arbitrary two-bit operation to the first two bits (i.e. to the bits
under a fixed “tape-head”).

To implement the two operations, [SV98] suggested to use a repeating polymer
like the ABC-chains used for global control schemes (e.g. [Llo93]). The chain
could be configured as a closed loop. To mark the position of the “first two
bits” of the chain (for operation o2), an atom of a fourth type, D, is positioned
adjacent to the chain, in the desired location.

Notice that a system supporting operations o1 and o2 above can be re-phrased
in terms of a fixed “tape” containing the bit-string, and a moving “head” that
can be positioned over any adjacent pair of tape cells. For convenience, the
tape can be viewed as a closed loop. In [SV99] an architecture is proposed that
uses a repeating polymer with 8 species to implement a system having four such
tapes. A rather complicated scheme for implementing the cooling algorithm is
described for this four-tape machine.

Some versions of the cooling algorithm ([BMRVV], [FLMR04]) use (classical
reversible) 3-bit operations: generalized Toffoli gates (from which controlled-
swap operations can be implemented).1 Without access to ancillary bits, the
Toffoli cannot be implemented by classical 2-bit gates (cnot and not gates).
It can be implemented without ancilla if we also have access to arbitrary single-
qubit quantum gates [BBC+95]. So to implement the algorithms of [BMRVV],
and [FLMR04] using operations o1 and o2 would require inherently quantum
operations. An error analysis of the cooling algorithms is greatly simplified if we
assume it has a “classical” implementation, however. Fortunately, ABC-chains
naturally support generalized Toffoli operations directly, since the transition
frequency of one species will be affected by the states of the neighbouring bits
of two other species.

It is worth revisiting the idea put forth in [SV98], to use an ABC-chain. I
propose an alternative set of operations that should be supported (these are
sufficient for cooling, although obviously not for quantum computing):

o′1) Move any three bits into adjacent positions under a fixed “tape head”
(which covers three bits).

o′2) Apply any generalized Toffoli or cnot operation to the bits under the
tape head.

1By “generalized Toffoli” I mean any 3-bit gate that applies a not operation to one of the
bits conditioned on a specific pattern of the basis states of the other two bits.
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Using the scheme described in Appendix A, o′1 and o′2 can be implemented on
an ABC-chain which is configured as a closed loop.2 An atom of a fourth type,
D is positioned adjacent to some ABC-triple selected (arbitrarily) to be the
position of the tape head.

The cooling algorithms work by moving some bits under the tape head and
applying a basic (2-bit or 3-bit) RPC step. The resulting cooler bits are then
moved to one side of the array (tape), while the hotter bits are moved to the
other side. The RPC step is repeated to cool several bits, and then recursively
applied to these cooled bits.

3 The Reversible Polarization Compression Step

We will assume that our initial configuration is some string of bits, each of which
is (independently) in state 0 with some probability p > 0. Equivalently, we
assume the bits all have an identical bias B > 0 before applying the polarization
compression step. The assumption of independence (i.e. a binomial distribution
on the strings) is required for the analysis. 3 Algorithmic cooling only amplifies
an existing bias and hence the initial bias B must be positive.

The basic idea behind RPC is to implement a permutation that maps strings
with low Hamming weight (i.e. having many 0’s) to strings having a long prefix
of 0’s. Because it will be useful to implement cooling algorithms on systems for
which we don’t have arbitrary local control, we will construct RPC permutations
based on basic “RPC steps”. An RPC step will be a permutation on the states
of a small number of bits (2 or 3 in the examples I consider). The overall
system will be cooled by recursively applying the basic RPC step to all the bits.
If we apply the RPC steps to disjoint pairs or triples of bits at each stage, the
assumption of independence will hold throughout.

In the following sections we will examine candidates for the RPC step, and
discuss how they may be implemented.

3.1 The 2-bit RPC step

The algorithms described in [SV99] and [BMRVV] both use a very simple 2-bit
operation for the basic RPC step. The operation begins with a cnot gate.
Suppose the cnot is applied to two bits initially having some positive bias B.
After the cnot, the target bit is 0 if both bits were originally equal, and is 1
if both bits were originally different. In the case that they were both the same,

2We could alternatively use a linear configuration, but would then have to be careful about
the behaviour at the ends of the chain. One approach would be to have the chain be long
enough so that the bits of interest are sufficiently far into the interior of the chain that the
effects the ends are irrelevant.

3In [SV99] it is suggested that by performing an initial permutation of the bits we can
limit our reliance on the assumption of independence.
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the control bit has an amplified bias after the cnot. So, conditioned on the
outcome of the target bit, the control bit is either accepted as a new bit with
higher bias and is subsequently moved to the “colder” side of the array with
a sequence of controlled-swap operations, or it is rejected and subsequently
moved to the “warmer” side of the array. For specificity, I will refer to this 2-bit
RPC step as “2BC”.

Suppose the values of the control and target bits before the cnot are bc and bt
respectively. Then after the cnot the value of the target bits is bc + bt. The
control bit is accepted iff this value equals 0. The probability that bc = 0 given
that bc + bt = 0 is

P (bc = 0 ∧ bt = 0)

P (bc + bt = 0)
(1)

=
1

2
+

2B
1 + B2

(2)

and so in this case the bias of the control bit is

B′ =
2B

1 + B2
. (3)

The probability that the control bit is accepted equals the probability that
bc + bt = 0, which is

1 + B2

2
. (4)

If the control bit is rejected, it has bias 0. To achieve the polarization compres-
sion, the cnot must be followed by an operation that selects the accepted bits
to be retained. This is accomplished in the 2BC operation by controlled-swap
operations that move the bit to the left or right according to whether it was
accepted or rejected.4

A cooling algorithm can work by recursive application of the 2BC step across
many bits having an initial bias Bi. First some of the bits will be cooled by one
application of 2BC, while others are warmed. The cooled bits will be moved
away from the warmed bits, and then cooled further by another application of
2BC, and so on. The total number of starting bits required is determined by the
depth of recursion required to obtain a single bit cooled to the desired target
bias.

3.2 A 3-bit RPC step

The algorithm described in [FLMR04] uses a 3-bit reversible polarization com-
pression step (3BC). This RPC step is implemented by a permutation on the

4In Section 3.3 we will show that the cnot followed by a controlled-swap actually computes
the majority of three bits, and thus the 2BC operation is equivalent to the 3BC operation
defined in Section 3.2.
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basis states of a 3-bit register that has the effect of increasing the bias of the one
of the bits, while decreasing the bias of the other two. Experimental demon-
stration of the 3-bit RPC step has been conducted using NMR [BMRNL]. The
implementation of the 3BC operation given in [FLMR04] uses a cnot gate fol-
lowed by a controlled-swap gate. Recall from our discussion in Section 2 that
we are assuming that the bits have already been moved onto an ABC-triple un-
der the “tape-head”, and that we can implement any reversible 3-bit (classical)
operation on them. The quantum circuit model is a convenient paradigm for
describing the operations5. Note that the controlled-swap can be implemented
by generalized Toffoli operations, as shown in Figure 1. (Approaches for imple-
menting such generalized Toffoli gates on ABC-chains are described for example
in [Llo93] and [Ben00].)

Figure 1: A circuit for the 3BC step using cnot gates and generalized Toffoli gates.

The permutation implemented by the circuit in Figure 1 results in the majority
value of the three bits (before the operation) being encoded into bit A. Since
we are only interested in the final bias of bit A, we can use any permutation
that has this effect. In fact, the following claim says that such a permutation is
the best choice for a 3-bit RPC step.

Claim 1 Suppose we have a register of n bits independently having identical
bias B > 0, where n is odd. Suppose we want to implement a permutation that
has the effect of increasing the bias of the first bit as much as possible. Then
the best choice is a permutation that computes the majority value of the n bits
into the first bit.

Proof Since each bit has bias B > 0, each bit is independently 0
with probability p > 1

2 . An optimal permutation for increasing the

bias of the first bit will be one which maps the 2n

2 most-likely strings

to strings having a 0 in the first bit. The 2n

2 most-likely strings are
precisely those having at least

⌈

n
2

⌉

bits in the state 0. �

The circuit is shown in Figure 2 is an alternative implementation of the 3-
bit majority, which is simpler in terms of Toffoli and cnot operations. I will

5Current NMR experiments in algorithmic cooling [BMRNL] do not implement the 3-bit
permutation through a decomposition into a sequence of gates such as we consider here, but
rather use a more direct method. This direct method is not scalable in the number of bits
over which the majority is being computed.
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henceforth refer to the operation implemented by this circuit as 3BC. Note that
the circuit of Figure 2 implements a different permutation that that implemented
by the circuit of Figure 1, but the effect on bit A (i.e. after tracing-out bits B
and C) is the same for both circuits (assuming the input bits are independently
distributed).

Figure 2: An alternative circuit for computing the majority of three bits can be used
for the 3BC operation.

Since Toffoli and cnot operations are “classical” in the sense that they do not
generate nontrivial superpositions given basis states as inputs, we can analyze
the behaviour of the 3BC circuit entirely in the computational basis. In the
following, I will restrict the analysis in terms of classical bits.

Consider the effect on the bias of bit A after applying the circuit of Figure 2.
The majority value is computed into bit A. Suppose initially the bias of each
of the three bits is B. So the probability for each bit equaling 0 is initially
(1 + B)/2. After the 3BC operation, the probability that bit A (which now
equals the majority of the initial values of A,B,C) equals zero is

p(A) =

(

1 + B
2

)3

+ 3

(

1 + B
2

)2 (
1− B
2

)

(5)

=
1

4
(2 + 3B − B3). (6)

So the bias of bit A after the 3BC operation is

B′ = 2p(A) − 1 (7)

=
3

2
B − 1

2
B3. (8)

3.3 Equivalence between the 2BC and 3BC operations

Recall that 2BC is cnot followed by controlled-swap operations which moves
the control bit (of the cnot) to the left or right conditioned on the state of the
target bit. The cnot itself has no effect on the bias of the control bit. It is the
value of the target bit after the cnot that provides some information about the
state of the control bit. In the case that the target bit equals zero, the control
bit is more likely to be 0, and hence has a greater bias. So the 2BC step is really
a method for gaining some information about which bits are more likely to be
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zero, and moving these off to one side. After a single application of 2BC on two
bits having equal bias, we may or may not be left with a bit having increased
bias.

The 3BC step, on the other hand, deterministically increases the bias of the
third bit at the expense of decreasing the bias of the other two. Every time
we apply the 3BC step to three bits having equal bias we are certain to be left
with a bit whose bias has been increased. This property makes it somewhat
simpler to analyze the efficiency of algorithms based 3BC. The analysis of the
2BC-based heat-bath algorithm in [BMRVV] relies on the law of large numbers,
and gives a worse bound than does the analysis of the 3BC-based

algorithm of [FLMR04].

In the algorithms of [SV99] and [BMRVV] the cnot of the 2BC step is always
followed by a controlled-swap operation. An important observation is that the
cnot followed by a controlled-swap actually computes the three-bit majority
(indeed this is the way the 3BC step was implemented in [FLMR04]). Specifi-
cally, suppose we first apply a cnot between bits in states b1 and b2 (with b1 as
the control bit), and then apply a controlled-swap between b1 and a third bit
in state c, controlled on the target bit of the cnot being 0. The final state of c
is

b1c+ b2c+ b1b2 (9)

which is the majority of b1, b2, c. So if we explicitly include the extra target bit
of the controlled-swap operation, the 2BC step is is equivalent to the 3BC step.

This suggests an equivalence between the early algorithms described in terms
of a 2BC operation and algorithms phrased in terms of a 3-bit majority vote
(3BC). For this reason, in the following I will restrict attention to algorithms
based on the 3BC operation.

4 Efficiency

4.1 The simple recursive algorithm

We will analyze the efficiency of a simple algorithm that recursively partitions
the string of bits into triplets and applies 3BC to these triplets. After each 3BC
step (say on bits A,B,C), the B and C bits which become heated are discarded.
Thus at each level of recursion the total number of bits is reduced by a factor
of 3, and the remaining bits’ bias is increased from B to a new value

B′ =
3

2
B − 1

2
B3. (10)

To simplify the analysis we will approximate B′ by

B′ ≈ 3

2
B. (11)
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After k levels of recursion the bias is increased to

Bk ≈
(

3

2

)k

B. (12)

This gives us an estimate on the number of levels of recursion k required to
achieve some target bias Bt < 1 on a single bit.

k ≈ log3/2

(Bt

B

)

. (13)

Therefore the total number of bits starting at bias B required to obtain one bit
with a target bias of Bt is 3

k which is polynomial in Bt. For example, suppose
we start with a bias of B = 10−5 (see [M05]). Then the number of bits required
to yield a single bit with bias 0.1 is about 6.9× 1010, and the number required
to yield a bit with bias 0.9999 is about 3.5× 1013.

Note that this analysis has only given the number of bits required. To obtain
a good estimate of the time complexity, we would have to specify the compu-
tational model more precisely, and account for the time required to shuttle the
states around as required by the architecture and the algorithm.

4.2 Algorithms using a heat bath

There are many ways in which the recursive algorithm might be modified to
take advantage of a heat bath. The heat bath is a mechanism by which a
heated bit can be exchanged for a fresh bit having initial bias Bi (taken from
the environment). For a rough analysis, we ignore the details of how the heat-
bath contact will be implemented, and assume we can apply an operation which
resets a bit’s bias to Bi on-demand (this may be an unrealistically optimistic
assumption).

One approach to using the heat bath in a 3BC algorithm is as follows. First
apply the 3BC step as in the simple recursive algorithm. At this point we have
n/3 bits cooled to B′. Now, instead of discarding the 2n/3 bits that were heated
in this process, send them to the heat bath to return them to bias Bi. Then
partition these 2n/3 bits into triples, and apply the 3BC step to them. This
yields another 2n/9 bits of bias B′. Repeat this process until there are fewer
than 3 bits left having bias less than B′ (there will always be exactly 2 bits left
over). Now we have n− 2 bits cooled to bias B′ and we can proceed to the next
level of recursion. As before, the number of levels of recursion k required to
achieve a bit having some target bias Bt < 1 is

k ≈ log3/2

(Bt

Bi

)

. (14)

This time, however, a logarithmic amount additional work is done for each level
of recursion. By taking this extra time, we save on the total number of bits
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required. After each level of recursion an additional 2 bits are discarded. So the
total number of bits required to obtain one bit cooled to Bt by this method is
2k which is polylogarithmic in Bt. As before, supposing we start with a bias of
Bi = 10−5, then the number of bits required to yield a single bit with bias 0.1 is
about 46, and the number required to yield a bit with bias 0.9999 is about 57.

Another approach to using the heat bath is described in [SMW07]. Their algo-
rithm repeatedly applies the 3BC step to three bits having bias values Bj−2,Bj−1

and Bj. This requires more careful analysis. Consider applying 3BC to three
bits bj−2, bj−1, bj having initial bias values Bj−2,Bj−1 and Bj respectively, where
the majority is computed into the third bit bj . The resulting bias of the third
bit is

B′

j =
Bj−2 + Bj−1 + Bj − Bj−2Bj−1Bj

2
. (15)

Now suppose the first two bits are sent to the heat bath, and then run back
through the cooling procedure to regain bias values of Bj−2 and Bj−1. Then
3BC is applied again (on the same three bits, except this time the third bit
starts with bias B′

j). If this process is repeated several times, the bias of the
third bit reaches a steady state value of

Bj−2 + Bj−1

1 + Bj−2Bj−1
. (16)

The algorithm described by [SMW07] is based on this process. Suppose the
algorithm has built-up an array of k > 3 cooled bits b1, b2 . . . , bk having bias
values B1,B2, . . . ,Bk in that order, where Bj =

Bj−2+Bj−1

1+Bj−2Bj−1

for each 3 < j < k.

Then in the next stage of the algorithm a new bit bk+1 is introduced having the
heat-bath bias B0. The 3BC procedure is applied to the three bits bk−1, bk, bk+1

repeatedly, where between each application the algorithm is recursively repeated
to re-establish the bias values Bk−1,Bk on bits bk, bk+1. Repeating this process
several times the bias of bit bk+1 will reach the steady state value Bk+1 =
Bk−1+Bk

1+Bk−1Bk
.

Starting with n bits of bias Bi, the algorithm of [SMW07] achieves one bit of bias
approximately Bn = BiF (n), where F (n) is the nth Fibonacci number. This is
even better than the simple recursive heat-bath method described previously.
Starting with a bias of Bi = 10−5, the number of bits required for this method
to yield a single bit with bias 0.1 is about 20, and the number required to yield
a bit with bias 0.9999 is about 28. There is a polynomial cost in time incurred
by the repeated re-cooling of bits from the point of heat-bath contact at the left
end of the chain up to Bj−2 and Bj−1.

Notice that in the heat bath algorithms we have described, after a 3BC operation
the two bits that have become heated by this operation are both sent to the
heat bath. In the early stages of an algorithm, this would be sensible, because
the 3BC operation will have warmed those two bits to bias values less than the
initial bias Bi. Towards the end of the algorithm, however, 3BC will be applied
to triples of bits that are all very cold bits, and the bits that become heated may

10



still have bias considerably higher than Bi. In this case, sending these bits to the
heat bath does not seem like the right thing to do. To analyze the performance
of algorithms, however, it is extremely convenient to assume we always do so. If
we do not send the two heated bits back to the heat bath after a 3BC application,
the bits’ values are no longer described by independent probability distributions,
and bias values are no longer well-defined. It is convenient to model the process
of a 3BC application followed by sending the two heated bits to the heat bath
as a single operation, as follows.

Definition 1 Consider three bits b1, b2, b3 having bias values B1 ≤ B2 ≤ B3

respectively. Define 3BChb as the three-bit majority on b1, b2, b3 (where the
majority is computed into b3) followed by sending b1 and b2 to the heat bath.
The bias values of the three bits after this operation are Bi,Bi,

B1+B2+B3−B1B2B3

2
respectively.

The heat-bath algorithms described above can all be described as a sequence of
operations (3BChb, P1, 3BChb, P2, 3BChb, P3, . . .) where each 3BChb is applied
to three bits in some specific positions (e.g. under a “tape head”), and each Pi

is some permutations of the positions of the bits in the string. The following
claim shows that the algorithm of [SMW07] is the best such algorithm (this is
not claimed in [SMW07]).

Claim 2 Consider a string of bits each having initial bias value Bi. Let A be
any cooling algorithm described by a sequence of operations

3BChb, P1, 3BChb, P2, 3BChb, P3, . . .

where each 3BChb is applied to three bits in some specific positions (e.g. under
a “tape head”), and each Pi is some permutation of the positions of the bits
in the string. At any stage of the algorithm, suppose we arrange the bits in a
nondecreasing order of their bias values B1, . . .BN . Then we have Bj ≤ BiFj

for all 1 ≤ j ≤ N , where Fj is the jth Fibonacci number.

The proof is by induction. The claim is initially true (before starting
the algorithm) by assumption. Since the only operation allowed in
A that changes the bias values is the 3BChb operation, it suffices to
show that after an arbitrary 3BChb operation the claim is still true.
Suppose the ordered bias values before the 3BC operation are

B1,B2, . . . ,BN .

Then suppose the 3BChb operation is applied to any three bits, sup-
pose those having bias values Bk,Bl and Bm, where k < l < m.
We assume that after the 3BC operation the value of Bm is not de-
creased. This is a safe assumption, because otherwise algorithm A
would have done just as well not to apply that 3BC operation.
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After the 3BChb operation, the new bias of the bit originally indexed
by m is

B′

r =
Bk + Bl + Bm − BkBlBm

2
.

By assumption we have Bm ≤ BiFm, Bl ≤ BiFm−1 and Bk ≤
BiFm−2. Since Fm = Fm−1 + Fm−2 by definition, we have

B′

r ≤ BiFm. (17)

Now, suppose the re-ordered bias values are

B′

1, . . . ,B′

N .

Since two of the bits were subjected to heat bath contact, we have
B′
1 = B′

2 = Bi and B′
j < Bj for 3 ≤ j ≤ m − 1. So the claim

is true for the first m − 1 bias values. By the ordering we have
B′
m, . . . ,B′

r−1 ≤ B′
r, and by (17) we know these are all at most Fm,

so the claim is true for these bias values. For the remaining bits we
have B′

j = Bi ≤ Fj for r + 1 ≤ j ≤ N , and so the claim is true for
them as well. This completes the proof. �

4.3 Accounting for the heat bath as a computational re-

source

The heat bath is typically modeled by a process whereby a hot bit is magically
replaced by a fresh bit having the initial bias Bi. Usually we would make some
assumption about where the heat-bath contact occurs, for example requiring
that only the bit on the end of a chain can be replaced with a fresh bit.

From a complexity theory point of view, the heat bath is a resource that should
be account for. For modeling the physics of the situation it might be very
convenient to draw a conceptual boundary between the system we are trying
to cool and the heat bath, which for all practical purposes might be extremely
large. Continuing our previous analogy between heat-bath cooling and a kitchen
refrigerator, if we put the refrigerator in a large enough room we won’t have to
account for the fact that the room itself is gradually heated by the radiator on
the back of the fridge. While heat-bath techniques appear to drastically reduce
the number of bits required to achieve a target bias, it should be recognized
that this hasn’t come for free. The extra bits ultimately come from the heat
bath. In practice, it may be very reasonable to assume we get these bits “for
free”, since we don’t have to exercise control over the heat bath the way we do
with the bits directly involved in the algorithm.
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5 Accounting for errors in an analysis of cooling

In the following sections I investigate the performance of cooling algorithms
when errors can occur in the RPC step. The bounds I will derive will apply
to cooling algorithms that are based on recursive application of the 3BC step,
where the step is always applied to 3 bits that have been previously cooled to
equal bias values. In Section 8 I discuss how the same approach can be applied
to analyze more general algorithms based on the 3BC step. I do not account for
errors that might occur between applications of the RPC steps, such as when
bits are being shuttled around, or placed in an external heat bath. For this
reason the bounds apply quite generally, independent of implementation details
and low-level algorithmic details.

The most general way to analyze the effect of errors on a quantum circuit is to
examine the effect of the errors on the density matrix of the state as it evolves
through the circuit. As we observed above, the 3BC step can be implemented
by classical operations, and can be analyzed entirely in the computational basis.
I therefore perform the error analysis in a classical setting.

Suppose we implement the RPC operation in a system subject to errors de-
scribed by a set of error patterns {Sj}. The error pattern is a record of what
errors actually occurred. For each error pattern Sj we can analyze the effect by
considering a new circuit containing the original RPC circuit as well as the error
operations that occurred. We can then find the probability pj that the cooled
bit would be in state 0 after applying this new circuit. Thus the probability
that the cooled bit equals 0 for the overall process is

p =
∑

j

pj Pr(Sj) (18)

where Pr(Sj) is the probability that error pattern Sj occurs. The new bias of
the cooled bit after the process is then

B′ = 2p− 1 (19)

Equivalently, we could compute the new bias B′
j of the cooled bit resulting from

application of the RPC step for each error pattern Sj , and take a weighted sum
of these bias values (weighted by the probabilities Pr(Sj)).

B′ =
∑

j

B′

j Pr(Sj). (20)

After obtaining the new bias B′ of the cooled bit after the overall process, we
can obtain theoretical limits on the performance of the cooling algorithm by
analyzing the condition

B′ > B (21)

where B is the bias before the RPC and error channel were applied (this simply
says that the bias should be greater after application of the 3BC step). In
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practice, to analyze the inequality

B′ − B > 0 (22)

we study the expression B′−B, which for the error models we consider will be a
quadratic or cubic polynomial in B (and also a function of the error rates). By
studying the roots of this polynomial we can find ranges of values for the error
rates for which inequality (22) has solutions B > 0, and also obtain the maximum
value of B which is a solution (this maximum value will be the maximum bias
achievable by the RPC step for the given error rates).

6 The symmetric bit-flip channel

The first error model we will consider is the symmetric bit-flip model, in which a
bit’s value is flipped with probability ε < 1

2 (“symmetric” in this context means
that the probability of a bit flip is independent of the initial state of the bit).

If the bit-flip channel is applied to a bit initially having bias B, the result is a
bit with bias −B.

6.1 3BC followed by a symmetric bit-flip error

We will now consider the case in which a bit-flip error can occur after the 3BC
step has been performed (and errors do not occur between application of the
gates in Figure 2).

There are two error patterns. Pattern S1 represents the case where a bit flip
does not occur. In this case, the final bias of bit A is

B′

1 =
3

2
B − 1

2
B3 (23)

as we found in Section 3.2 (equation (8)). The error pattern S2 represents the
case where the bit flip occurs on the newly biased bit. In this case, the bias is
negated, and so the new bias is

B′

2 = −3

2
B +

1

2
B3 (24)

So the new bias of A for the overall process is

B′ = (1− ε)B′

1 + εB′

2 (25)

=

(

3

2
B − 1

2
B3

)

(1− 2ε). (26)

Then the condition that B′ > B gives

− (1− 2ε)B2 − 6ε+ 1 > 0 (27)
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which leads to

ε <
1

2
− 1

3− B2
(28)

<
1

6
. (29)

So for this simple error model εth = 1/6 is an error threshold beyond which the
3BC procedure can have no positive effect on the bias (regardless of how low
the initial bias is). For a fixed error rate ε < εth a bound on the maximum bias
that will be achievable is obtained by solving for B in (27)):

B <

√

1− 6ε

1− 2ε
= Blim. (30)

Approximating the expression to second-order gives

Blim ≈ 1− 2ε− 6ε2. (31)

Once the bias exceeds Blim, the 3BC procedure will no longer be effective in
increasing the bias, and the algorithm will yield no further improvement. So Blim

represents the limit of the bias that can be achieved by any cooling algorithm
that is based on the 3BC step, under this error model.

For error rates ε below 1%, the approximate value in (31) is within 0.01% of
the value in (30).

6.2 Symmetric bit-flip errors during application of 3BC

We will now do a more careful analysis accounting for the possibility of errors
occurring during the application of the 3BC step. Specifically, we consider
independent bit-flip errors on each bit with probability ε, where the errors can
occur at each time step; that is, immediately after the application of any gate in
the circuit of Figure 2 (equivalently after the application of each o′2 operation).
This is only one possible decomposition of the majority-vote operation into a
sequence of basic operations, but it serves to illustrate the technique for analysis.
A similar analysis can easily be conducted given an alternative decomposition
of the majority vote into a sequence of basic operations.

There are 9 possible sites for bit-flip errors in Figure 2, but two of these can be
ignored (errors on the B or C bits after the final Toffoli have no effect on the
final bias of the A bit). Figure 3 illustrates the circuit including the possible
error operations. The binary variables ei shown on the circuit are taken to be
“1” if a bit-flip error occurs in that location, and “0” otherwise.

Suppose the value of the (A,B,C) register is initially (a, b, c), where a, b, and
c are the binary values of the three bits. Analyzing the circuit in Figure 3, the
final value of the A bit is found to be

a+ e1 + e4 + e7 + (a+ b+ e2 + e5)(a+ c+ e1 + e3 + e6) mod 2. (32)

15



Figure 3: The majority circuit with relevant error positions shown. The binary
variables ei are taken to have the value 1 if a bit-flip error occurred in the relevant
location (otherwise ei = 0).

Since the errors occur independently with probability ε at each position, the
probability associated with each error pattern Si = (e1, e2, . . . , e7) (where i =
∑6

k=0 ek2
k indexes the possible patterns) can be evaluated as

Pr(Si) = εe1+e2+e3+e4+e5+e6+e7 (1− ε)ē1+ē2+ē3+ē4+ē5+ē6+ē7 (33)

where x̄ ≡ 1+x mod 2. Initially, the probability that each bit a, b or c equals 0 is
p = B0+1

2 . So the tuple (a, b, c, e1, . . . , e7) describes the situation where the reg-
ister was initially in the state (a, b, c) and the error described by (e1, e2, . . . , e7)
occurred, and this happens with probability

Pr(a, b, c, e1, . . . , e7) ≡ (1−p)a+b+cpā+b̄+c̄εe1+e2+e3+e4+e5+e6+e7(1−ε)ē1+ē2+ē3+ē4+ē5+ē6+ē7 .
(34)

Let p(A) be the probability that the final value of A for the overall process equals
0. The value of p(A) is obtained by adding the probabilities Pr(a, b, c, e1, . . . , e7)
over all those tuples (a, b, c, e1, . . . , e7) for which the value of (32) equals 0. The
new bias of A is then determined as

B′ = 2p(A) − 1. (35)

This value is

B′ = (2ε− 1)3
[

1 + 4ε2(ε− 1)− 4pε(6ε2 − 8ε+ 3)− 2p2(2p− 3)(2ε− 1)3
]

(36)
which can be expressed in terms of the original bias by substituting p = B+1

2 :

B′ =
1

2
B(1− 2ε)3

(

3− 6ε+ 4ε2 − B2(1− 2ε)3
)

. (37)

Now the condition B′ > B leads to

− 2 + (1− 2ε)3
(

3− 6ε+ 4ε2 − B2(1 − 2ε)3
)

> 0. (38)

The expression on the left side of (38) represents the improvement in the bias.
It decreases monotonically as B increases from 0, and so an upper bound can
be obtained by setting B = 0. Then, by studying the real roots of the resulting
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polynomial in ε we can determine the range of values for which the improvement
is positive. By numerical computation, the threshold is found to be

ε < 0.048592 ≡ εth. (39)

For a fixed ε < εth, inequality (38) also gives a bound on the maximum bias
achievable by the 3BC step under the given error model.

B <

√
1− 24ε+ 76ε2 − 120ε3 + 96ε4 − 32ε5

(1 − 2ε)3
≡ Blim (40)

For small values of ε, we can approximate (40) to second order.

Blim ≈ 1− 6ε− 82ε2. (41)

For error rates ε below 1%, the approximate value in (41) is within 0.1% of the
value in (40).

7 Debiasing errors

We will now consider a more general error model for a classical bit. Under this
error model, called the asymmetric bit-flip channel, a bit transforms from 0 to
1 with some probability ε0, and transforms from 1 to 0 with some probability
ε1.

A fixed-point probability distribution for the asymmetric bit-flip channel is

p[0] =
ε1

ε0 + ε1
(42)

p[1] =
ε0

ε0 + ε1
. (43)

If left to evolve for under the symmetric channel, a bit will eventually settle to
a bias value of

Bsteady =
ε1 − ε0
ε0 + ε1

. (44)

The rate at which the bias approaches this fixed point is related to (ε0 + ε1).

It will be convenient to make a couple of assumptions about the error rates.
First, we will assume that errors cause the system to tend back to the initial
bias Bi (which would be the same as, or close to, the bias of the “heat bath” for
cooling algorithms that use this device). That is,

Bsteady = Bi. (45)

In other words, errors cause a partial debiasing of the cooled bits (ideally, this
will happen very slowly, and so a the value for the sum of the error rates,
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(ε0+ ε1), will be small). In the following, I will refer to this type of asymmetric
bit-flip error as a debiasing error.

Since Bi > 0, we have
ε1 − ε0 > 0. (46)

We will also assume that the error rates ε0 and ε1 are both less than 1
2 . In this

case we have

ε1 − ε0 < Bi. (47)

Since we assumed that the bias of the bit being cooled starts at Bi and is
thereafter nondecreasing, we can say that at any stage of the algorithm we have

ε1 − ε0 < B (48)

where B is the current bias of the bits that the RPC step is being applied to.

Consider what happens to a bit initially having some bias B when we apply the
asymmetric bit-flip channel once. A simple calculation shows the resulting bias
to be

B′ = B(1− (ε0 + ε1)) + (ε1 − ε0). (49)

In the following analysis, it will be convenient to make a change of variables,
letting

s ≡ ε0 + ε1 , and (50)

d ≡ ε1 − ε0. (51)

Then our assumptions are s < 1, and 0 < d < B, and equation (49) becomes

B′ = B(1− s) + d. (52)

Notice that d < s is also an obvious condition.

Consider the special case of the symmetric bit-flip channel. In this case Bsteady =
0, and so Bsteady < Bi. This is why we obtained positive threshold error rates
for the RPC step to increase the bias. Now, under our assumption Bsteady = Bi,
we will not obtain such a threshold. Even with high error rates (fast debiasing)
the RPC step will increase the bias above Bi by some positive amount.

It is still important to analyze the effect of these errors on the RPC step, because
they will imply a limiting value on the highest bias achievable. The RPC step
tends to increase the bias away from the value Bi = d/s, while the errors tend
to force the bias back towards Bi. The maximum achievable value of B will be
determined by d and s, or equivalently, by Bi and s. Recall that s can be seen
as a measure of the rate at which the errors force the bias towards the initial
value Bi. Thus the maximum achievable bias is limited by the initial bias, and
by the rate at which errors cause the system to tend back to the initial bias.
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7.1 3BC followed by a debiasing error

Consider the scenario in which a debiasing error may occur immediately after
the 3BC operation. The bound obtained here will apply regardless of how the
3BC step is implemented. Assuming all three bits initially start with bias B, the
bias of bit A after the process (the 3BC circuit followed by a debiasing error) is

B′ =

(

3

2
B − 1

2
B3

)

(1− s) + d. (53)

The condition that B′ > B leads to

B3(s− 1) + B(1− 3s) + 2d > 0. (54)

For values of s < 1/3 (recall the threshold condition ε < 1/6 we obtained in
Section 6.1) and for d < s, the cubic polynomial on the left-hand side of (54)
has one positive real root (and the value of this root will be less than 1). A
positive value of B will satisfy inequality (54) only if it is less than than the
value of this root. That is,

B <
i

“

−3(
√
3− i)(s− 1)(3s − 1) + (

√
3 + i)(−27d(s− 1)2 +

p

729d2(s− 1)4 + (−3 + 12s− 9s2)3)
2

3

”

6(s− 1)
“

−27d(s− 1)2 +
p

729d2(s− 1)4 + (−3 + 12s− 9s2)3
” 1

3

.

(55)

The appearance of nonreal numbers in (55) is unavoidable6. To second order
in d and s, (55) gives

Blim ≈ 1− s+ d− 3

2
s2 − 3

2
d2 + 3ds. (56)

In the symmetric case, the bound (56) agrees with the bound (31) which we
found in Section 6.1.

In terms of s and Bi, (56) is

Blim ≈ 1− s− 3

2
s2 + Bis+ 3Bis

2 − 3

2
B2
i s

2. (57)

For error rates less than 1%, the approximate value (57) agrees with the actual
value to within 10−5.

7.2 Debiasing errors during application of 3BC

We will now consider the error model in which debiasing errors can occur at
each time step (i.e. immediately after the application of any gate in the circuit
of Figure 2, or equivalently after each o′2 operation). The analysis is performed
similarly to what we did in Section 6.2, by considering the probability associated

6This is Casus Irreducibilis: in certain cases, any expression for the roots of a cubic poly-
nomial in terms of radicals must involve nonreal expressions, even if all the roots are real.
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with each binary tuple (a, b, c, e1, . . . , e7) for which the resulting value of bit A
equals 0. For the asymmetric model, by tracing through the circuit of Figure 2,
we find that equation (34) generalizes to

Pr(a, b, c, e1, . . . , e7) ≡ (1−p)a+b+c
p
ā+b̄+c̄

“

ε
P

7

i=1
φ̄iei

0

” “

(1− ε0)
P

7

i=1
φ̄iēi

” “

ε
P

7

i=1
φiei

1

” “

(1− ε1)
P

7

i=1
φiēi

”

(58)

where x̄ ≡ (1 + x mod 2) and

φ1 = a (59)

φ2 = a+ b mod 2 (60)

φ3 = c (61)

φ4 = φ1 + e1 mod 2 (62)

φ5 = φ2 + e2 mod 2 (63)

φ6 = φ3 + e3 + φ4 mod 2 (64)

φ7 = φ4 + e4 + (φ5 + e5)(φ6 + e6) mod 2. (65)

Again we can sum the probabilities Pr(a, b, c, e1, . . . , e7) over those tuples for
which the final value of bit A (given by equation (58) equals 0, and compute
then new bias. The new bias, approximated to second-order in s and d, is

B′ ≈ 1

2

(

(5d+ 4d2 − 6sd) + (3 − 12s+ 19s2 − d2 + 4ds)B + dB2 + (−1 + 6s− 15s2)B3
)

.

(66)
Then the condition B′ > B gives

(5d+4d2−6sd)+(1−12s+19s2−d2+4ds)B+dB2+(−1+6s−15s2)B3 > 0. (67)

For values of s . 0.04 (recall the threshold condition we obtained in Section 6.2)
and for d < s, the cubic polynomial on the left-hand side of (67) has one positive
real root (whose value will be less than 1, modulo the error in the second-order
approximation). A positive value of B will satisfy inequality (67) only if it is
not greater than the value of this root, which is (to second order in s and d)

Blim ≈ 1− 3s+ 3d− 9d2 − 41

2
s2 + 32ds. (68)

In the symmetric case, the bound (68) agrees with the bound (41) that we
obtained in Section 6.2. In terms of s and Bi we have,

Blim ≈ 1− 3s− 41

2
s2 + 3Bis+ 32Bis

2 − 9B2
i s

2. (69)

For error rates less than 1%, the approximate value (57) agrees with the actual
value (55) to within 10−4.
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8 More general algorithms based on 3BC

In all of the above error analysis, we have assumed that the 3BC step is applied
to three bits having identical bias at each stage of the algorithm. Recall in
Section 4 it was mentioned that an algorithm proposed in [SMW07] is structured
somewhat differently, and applies the 3BC step to three bits having different
bias values Bj−2, Bj−1 and Bj . We can still learn something by performing the
previous analysis assuming all three bits have bias max(Bj−2,Bj−1,Bj), but it
is worth briefly considering how we could analyze this more general scenario
directly. Consider applying the debiasing error channel with error parameters
ε0 and ε1 immediately after the 3BC step is applied. In this case, the bias of
the third bit after the process is

Bj−2 + Bj−1 + Bj − Bj−2Bj−1Bj

2
(1− s) + d (70)

(recall s = ε0 + ε1 and d = ε1 − ε0). As in Section 7, we assume that the error
parameters satisfy s < 1, d > 0 and d is less than each of Bj−2, Bj−1 and Bj .
We also assume that d

s is less than each of Bj−2, Bj−1 and Bj so that the errors
are indeed tending the system towards a lower bias.

Now suppose we proceed as in [SMW07] and send the first two bits back to the
heat bath, re-cool them up to bias values Bj−2 and Bj−1, and again apply 3BC.
Without errors, we mentioned previously that by repeating this process several
times the third bit reaches a steady-state bias value of

Bj−2 + Bj−1

1 + Bj−2Bj−1
. (71)

With the debiasing error channel being applied after every application of 3BC,
this steady-state bias value is reduced to

(Bj−2 + Bj−1)(1 − s) + 2d

1 + Bj−2Bj−1(1− s) + s
. (72)

Equations (70) and (70) can be used to analyze can be used to analyze more gen-
eral algorithms based on repeated application of 3BC, including the Fibonacci
sequence algorithm proposed in [SMW07], under the effect of debiasing errors
that may occur after each application. We could similarly decompose the 3BC
step into a suitable sequence of discrete operations, and proceed as we have done
above to analyze the effect of errors that may occur after each discrete step.

9 Conclusions and other considerations

I have studied the performance of cooling algorithms that use the 3-bit majority
as the compression step (e.g. [FLMR04], [SMW07]) and argued that previously
discovered algorithms (e.g. [SV99], [BMRVV]) can be re-cast in this way. I
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have proven the optimality of the best such algorithm for obtaining one cold
bit with the fewest possible number of initially mixed bits. An error analy-
sis of these algorithms has been conducted, first under a simple error model
(symmetric bit-flip), and then under a more realistic model of debiasing. Since
the implementations of the RPC steps are inherently “classical” (states do not
leave the computational basis), it is reasonable to restrict attention to these
classical error models. In each case, I first derived some bounds assuming that
errors may occur immediately after the RPC step. Since this may be taken as
a best-case scenario, then these bounds apply regardless of the implementation.
I also derived bounds assuming that the 3BC cooling step is implemented by a
sequence of physical operations that simulate a sequence of cnot and Toffoli
gates (i.e. a sequence of O′

2 operations). Specifically we considered the sim-
plest such arrangement for implementing the 3BC step, shown in Figure 2. The
results are summarized below (approximated to second-order).

Error Model Threshold Maximum achievable bias

Symmetric bit-flip after 3BC ε < 1
6 1− 2ε− 6ε2

Symmetric bit-flip during 3BC ε . 0.048592 1− 6ε− 82ε2

debiasing error after 3BC N/A 1− s− 3
2s

2 + Bis+ 3Bis
2 − 3

2B2
i s

2

debiasing error during 3BC N/A 1− 3s− 41
2 s2 + 3Bis+ 32Bis

2 − 9B2
i s

2

Given a specific low-level implementation of a cooling algorithm, specified as a
sequence of pulses applied to an ABC-chain or some other suitable hardware, a
detailed error analysis could be conducted in a manner similar to the approach
I have taken here. For specific cooling algorithms it will also be interesting to
analyze the effects of errors occurring between applications of the RPC step
(for example, while the bits are being permuted to move the required bits into
position for the next application of the cooling step). By studying the time-
complexity of a specific algorithm implemented on a specific architecture, we
can determine the balance between the rate at which the algorithm increases
the bias, and the rate at which debiasing errors are causing the bias to decrease.

Cooling algorithms can be built from basic steps other than the 3-bit majority.
For those that have “classical” implementations (that is, can be built from some
sequence of generalized Toffoli gates) the approach we have taken here could be
employed to conduct a similar error analysis. For basic RPC steps operating
on more than 3 bits, the kind of analysis we have performed here would require
examining higher-order polynomials, and this may have to be done numerically.

For RPC steps that are implemented “quantumly” (i.e. using gates that force
states to leave the the computational basis), more general quantum error models
will have to be considered, and a different approach to the error analysis will be
required.
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A Architecture using an ABC-chain

Recall the following two operations we proposed that should be supported by
an NMR computer for implementing algorithmic cooling.

o′1) Move any three bits into adjacent positions under a fixed “tape head”
(which covers three bits).

o′2) Apply any generalized Toffoli or cnot operation to the bits under the
tape head.

Here we sketch an method for implementing o′1 and o′2 on an ABC-chain which
is configured as a closed loop. Note that we could alternatively use a linear
configuration, but would then have to be careful about the behaviour at the
ends of the chain (one approach would be to have the chain be long enough so
that the bits of interest are sufficiently far into the interior of the chain that the
effects the ends are irrelevant). We will also assume that the loop consists of an
odd number of ABC-triples.

An atom of a fourth type, D is positioned adjacent to some ABC-triple selected
(arbitrarily) to be the position of the tape head.

We assume that the physical system directly supports the implementation of
a generalized Toffoli or cnot operation on all the ABC-triples in parallel (or
alternatively an all BCA-triples, or on all CAB-triples)7. We also assume that
we can implement any such operation on only the ABC-triple under the tape
head, by making use of the effect of the proximity of the D atom. So operation
o2 is directly supported by the hardware. Given these primitives, we focus on
the problem of implementing operation o1.

For clarity of exposition, we will refer to the physical bits of species A,B,C as
“cells” of “types” A,B,C. When we talk about “moving a bit to a cell”, we are
referring to a sequence of logical operations (usually nearest-neighbour swap

operations) that permute the logical states of the physical bits on the chain.
We will use the following lemma.

7details are described in [Llo93].
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Lemma 1 For any pair of bits initially occupying adjacent cells, there exists a
sequence of primitive operations that has the effect of bringing those bits into
adjacent positions under the tape head.

Proof Sketch Let SAB be the operation that swaps the states of
the bits on the A-cells with the bits in the neighbouring-B cells. The
sequence (SAC , SAB, SBC , SAB) has the effect of moving every bit
initially in an A-cell to the A-cell of the next ABC-triple to the left
(counterclockwise). It also moves every bit initially in a C-cell to
the C-cell of the next ABC-triple to the right (clockwise). It leaves
the bits on the B-cells fixed. By permuting the labels of the species
we have similar sequences for moving the bits in the A- and B-cells,
while keeping the bits in the C-cells fixed. Suppose we have a pair
of bits (bi, ci) in adjacent B- and C-cells, that we wish to move into
adjacent positions under the tape head. First we apply the sequence
that moves the bits in the A- and B-cells (keeping the bits in the
C-cells fixed) until bi is in the B-cell under the tape-head. Then
we apply the sequence that moves the bits in the A- and C-cells
(keeping the bits in the B-cells fixed), until ci is in the C-cell under
the tape head (beside bi). Similar procedures will bring any pairs of
adjacent bits into adjacent positions under the tape head. �

From the Lemma, it follows that we can implement a nearest-neighbour swap
operation between any adjacent pair of bits on the tape. First we move the
pair under the tape-head, and then use an o′2 operation to swap the states of
these bits. Finally use the sequence operation of o′2 to move all the bits back
to their corresponding original positions (modulo the swapped pair). Now it
follows that we can implement an arbitrary permutation of the bits on the tape
(by a suitable sequence of nearest-neighbour transpositions), of which operation
o′1 is a special case. Notice that this also allows us to perform the permutations
of the bits required to move cooled bits to one side of the tape and move warmer
bits to the other side, as would be required between applications of the basic
cooling step.
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