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In certain situations the state of a quantum system, after transmission through a quantum channel,
can be perfectly restored. This can be done by “coding” the state space of the system before
transmission into a “protected” part of a larger state space, and by applying a proper “decoding”
map afterwards. By a version of the Heisenberg Principle, which we prove, such a protected space
must be “dark” in the sense that no information leaks out during the transmission. We explain
the role of the Knill-Laflamme condition in relation to protection and darkness, and we analyze
several degrees of protection, whether related to error correction, or to state restauration after a
measurement. Recent results on higher rank numerical ranges of operators are used to construct
examples. In particular, dark spaces are constructed for any map of rank 2, for a biased permutations
channel and for certain separable maps acting on multipartite systems. Furthermore, error correction
subspaces are provided for a class of tri-unitary noise models.

I. INTRODUCTION

We consider a quantum channel of finite dimension through which a quantum system in some state is sent. The
output consists of another quantum state, and possibly some classical information. We are interested in the question
to what extent the original quantum state can be recovered from that state and that information. In particular, we
investigate if there are subspaces of the Hilbert space of the original system, on which the state can be perfectly
restored.
In the literature a hierarchy of such spaces, which we shall call protected subspaces here, has been described. The

strongest protection possible is provided in the case of a “decoherence free subspace” [1–4]. In this case the channel
acts on the subspace as a isometric transformation. All we have to do in order to recover the state, is to rotate it
back.
The next strongest form of protection occurs when the channel acts on the subspace as a random choice between

isometries, whose image spaces are mutually orthogonal. Then by measuring along a suitable partition of the output
Hilbert space, it can be inferred from the output state which isometry has occurred, so that it can be rotated back.
This situation is characterized by the well-known Knill–Laflamme criterion, [5, 6] and the protected subspace in this
case is usually called an error correction subspace.
The weakest form of protection is provided in yet a third situation, which was encountered in the context of quantum

trajectories and the purification tendency of states along these paths [7]. In this case the deformation of the state is
not caused by some given external device, but by the experimenter himself, who is performing a Kraus measurement
[8]. Also in this case the “channel” acts as a random isometry, but the image spaces need not be orthogonal. It is now
the measurement outcome (not the output state), that betrays to the experimenter which isometry has taken place.
Using this information, he is able to undo the deformation of the component of the state that lies in the subspace
considered.
It should be emphasized that the latter form of protection is far from a general error correction procedure. The

experimenter only repairs the damage that he himself has incurred by his measurement.
Nevertheless, the above situations seem mathematically sufficiently similar to deserve study under a common title.
In all these three cases the experimenter learns nothing during the recovery operation about the component of the

state inside our subspace. In this sense these subspaces can be considered “dark”, and this darkness is essential for
the protection of information. Our main result (Theorem 3) is concerned with the equivalence between protection
and darkness, which is a consequence of Heisenberg’s principle that no information on an unknown quantum state
can be obtained without disturbing it (Corollary 2).
The question arises, for what channels protected subspaces are to be be found. We consider several examples in

their Kraus decompositions. In each decomposition, we look for subspaces on which the channel acts as a multiple
of an isometry, to be called a homometry here. Obviously, every (Kraus) operator A acts homometrically on a one-

dimensional space Cψ; its image CAψ is another one-dimensional space, and the shrinking factor is
√

〈Aψ,Aψ 〉 =
‖Aψ‖. However, one-dimensional spaces are useless as coding spaces for quantum states. What we shall need,
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therefore, is the recent theory of higher rank numerical ranges [9, 10]. With the help of this we shall be able to
construct several examples.
The paper is organized as follows. A brief review of basic concepts including channels and instruments is presented

in section II. We discuss Heisenberg’s principle in Section III. and prove our main Theorem, Theorem 3 in Section IV.
In subsequent sections we analyze different forms of protected subspaces and compare their properties. In section V
we review the notion of higher rank numerical range and quote some results on existence in the algebraic compression
problem. Some examples of dark subspaces are presented in section VI, while an exemplary problem of finding an
error correction code for a specific model of tri–unitary noise acting on a 3×K system is solved in section VII.

II. CHANNELS AND INSTRUMENTS

Let H be a finite-dimensional complex Hilbert space, and let B(H) denote the space of all linear operators on H.
We consider H as the space of pure states of some quantum system. By a quantum operation or channel on this
system we mean a completely positive map Φ : B(H) → B(H) mapping the identity operator 1 = 1H to itself. The
map Φ describes the operation “in the Heisenberg picture”, i.e. as an action on observables. Its description “in the
Schrödinger picture”, i.e. as an action on density matrices ρ, is described by its adjoint Φ∗. The maps Φ and Φ∗ are
related by

∀ρ∀X∈B(H) : tr
(

Φ∗(ρ)X
)

= tr
(

ρΦ(X)
)

.

We note that the property Φ(1) = 1, which we require for Φ, is equivalent to trace preservation by Φ∗:

tr
(

Φ∗(ρ)
)

= tr
(

Φ∗(ρ) · 1
)

= tr
(

ρ · Φ(1)
)

= tr(ρ · 1) = tr(ρ) .

By Stinespring’s theorem, every channel Φ : B(H) → B(H) can be written as

Φ(X) = V †(X ⊗ 1M)V , (2.1)

where V is an isometry H → H⊗M for some auxiliary Hilbert space M. The minimal dimension r of M admitting
such a representation is called the Choi rank [11, 12] of Φ.
Any Stinespring representation of Φ naturally leads to a wider quantum operation

Ψ : B(H)⊗ B(M) → B(H) : X ⊗ Y 7→ V †(X ⊗ Y )V , (2.2)

which can be interpreted (in the Heisenberg picture) as the result of coupling the system to some ancilla having
Hilbert space M.
Thus Stinespring’s representation (2.1) can be symbolically rendered as in Fig. 1.

Φ ✚
✚✚

❩
❩❩

Ψ

B(H) B(H)
B(H)

B(M)

B(H)

FIG. 1: Stinespring’s dilation of Φ seen as coupling to an ancilla M

In this picture, the cross stands for the substitution of 1M (in the Heisenberg picture, reading from right to left), or
the partial trace (in the Schrödinger picture, reading from left to right). Physically, it corresponds to throwing away,
or just ignoring, the ancilla after the interaction. In the picture, the fact that Ψ is a compression, i.e. Ψ = V † · V for
some isometry V , is symbolized by the triangular form of its box.
Now, by blocking the other exit in Fig. 1, we obtain the conjugate channel [13], ΦC :

ΦC : B(M) → B(H) : Y 7→ Ψ(1H ⊗ Y ) = V †(1H ⊗ Y )V .

See also Fig. 2.
The main message of this paper is the following. The conjugate channel can be viewed as the flow of information into
the environment. By Heisenberg’s Principle, to be explained below, such a flow prohibits the faithful transmission of
information through the original channel Φ. In particular, if the information encoded in some subspace of H is to be
transmitted faithfully, nothing of it is visible from the outside: protection implies darkness. The degree of protection
(decoherence free, strong or weak) is related to the degree of darkness, for which we shall define some terminology.
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ΦC ✚
✚✚

❩
❩❩

Ψ

B(H) B(M) B(H)
B(H)

B(M)

FIG. 2: The conjugate channel ΦC .

Any orthonormal basis f = (f1, . . . , fm) in M corresponds to a possible von Neumann measurement Π∗
f on the

ancilla, which maps a density matrix ρ on M to a probability distribution (〈 f1, ρf1 〉 , 〈 f2, ρf2 〉 , . . . , 〈 fm, ρfm 〉)
on {1, 2, . . . ,m}. (Cf. Fig. 3.) In the Heisenberg picture this is the map from the algebra Cm with generators
e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . ., em = (0, 0, . . . , 0, 1), to B(M), given by

Πf : ei 7→ |fi〉〈fi| .

✟
✟✟

✟
✟✟

❍
❍❍

❍
❍❍Πf

B(M) C

m

FIG. 3: Von Neumann measurement on M.

In FIG. 3 the abelian algebra Cm is indicated by a straight line since it only carries classical information. Quantum
information is designated by a wavy line.
Let us now denote by If the “partial inner product map”

H⊗M → H : ϕ⊗ θ 7→ 〈 f, θ 〉ϕ ,

and let us write

Ai := IfiV ∈ B(H) .

Then since I†fiXIfj = X ⊗ |fi〉〈fj |, we obtain a decomposition of Φ along the basis (fi)
m
i=1 as follows:

Φ(X) = Ψ(X ⊗ 1M) =
m
∑

i=1

Ψ
(

X ⊗ |fi〉〈fi|
)

=
m
∑

i=1

V †I†fiXIfiV =
m
∑

i=1

A†
jXAj . (2.3)

This is a Kraus decomposition of Φ. Combining the coupling to the ancilla with a von Neumann measurement on the
latter, we obtain an instrument in the language of Davies and Lewis [14]:

Ψf : B(H)⊗Cm → B(M) : X ⊗ ei 7→ V †(X ⊗ |fi〉〈fi|)V = A†
iXAi . (2.4)

The isometric property of V is now expressed as

V †V =

m
∑

i=1

A†
iAi = 1 . (2.5)

III. HEISENBERG’S PRINCIPLE OR OBSERVER EFFECT

In quantum mechanics observables are represented as self-adjoint operators on a Hilbert space. When A and B
are commuting operators, then they possess a common complete orthonormal set of eigenvectors. Each of these
eigenvectors ψ determines a state which associates sharply determined values to both observables A and B.
But when A and B do not commute, such states may not exist. This important property of quantum mechanics was

first discussed by Heisenberg [15], and is called the Heisenberg Uncertainty Principle. It was formulated by Robertson
[16] in the form

σψ(A) · σψ(B) ≥ 1
2 | 〈ψ, (AB −BA)ψ 〉 | .
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Here σψ(X) is the standard deviation of X in the distribution induced by ψ. Already in the very same paper,
Heisenberg introduced a second and very different principle, which is sometimes designated as the “Observer Effect”,
and which we shall call the Heisenberg Principle here. Roughly speaking, it says that:

if A and B do not commute,
a measurement of B perturbs the probability distribution of A. (3.1)

In the first half century of quantum mechanics, physicists, including Heisenberg himself, were satisfied with this
formulation, and even considered it more or less identical to the Uncertainty Principle above.
In recent years it was realized that in fact we have here two different principles. Good quantitative formulations

have been given of the Heisenberg Principle (for example [17, 18]). For the purpose of the present paper we are
satisfied with a qualitative (’yes-or-no’) version.
Let us first note that the formulation of the principle needs sharpening. As it stands, the condition is not needed:

already in the trivial case that A = B measurement of B changes the probability distribution of A. Indeed changing
the probability distribution of an observable is the very purpose of measurement! And also, when A and B commute,
but are correlated, then gaining information on B typically changes the distribution of A. A characteristic property of
quantum theory only arises if we require that the outcome of the measurement of A is not used in the determination
of the new probability distribution of B. Even then, some states may go through unchanged.
Corrected for these observations, the Heisenberg Principle reads:

For noncommuting A and B we cannot avoid that,
for some initial states, a measurement of B changes the distribution of A,
even if we ignore the outcome of the measurement. (3.2)

The contraposition of the statement turns out to be mathematically more tractible:

If the probability distribution of A is not altered in any initial state
— by us performing some measurement and ignoring its outcome —
then the object measured must commute with A. (3.3)

In this form it is sometimes called the ’nondemolition principle’.
Now let us make this statement precise. We start with a self-adjoint operator A on H. Its distribution in the state

ρ is determined by the numbers tr(ρg(A)) when g runs through the functions on the spectrum of A. Then some
quantum operation is performed which on B(H) is described by a completely positive unit preserving map Φ. We
require that for all states ρ and all functions f

tr
(

Φ∗(ρ)g(A)
)

= tr
(

ρg(A)
)

,

which is equivalent to

Φ
(

g(A)
)

= g(A) .

I.e.: all elements of the *-algebra A consisting of functions of A are left invariant by Φ. Let us denote the commutant
of A by A′,

A′ = {X ∈ B(H) | ∀Y ∈A : XY = Y X} . (3.4)

Now, the quantum operation Φ is due to a measurement, so it is actually of the form

Φ(X) = Θ(X ⊗ 1),

where Θ : B(H)⊗Cm → B(H) is some instrument whose outcomes, labeled 1, 2, . . . ,m, in the state ρ have probabilities
p1, p2, . . . , pm to occur, where

pj = tr
(

ρΘ(1⊗ ej)
)

,

and where tr
(

ρΘ(X ⊗ ej)
)

/pj is the expectation of X , conditioned on the outcome j. (This situation is comparable
to, but more general than, that of Ψf in (2.4).) Here Cm is the algebra of measurement outcomes. Generalizing to
arbitrary A, we may now formulate the Heisenberg Principle as follows.
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Proposition 1 (Heisenberg Principle.) Let H be a finite dimensional Hilbert space, and B some finite dimensional
*-algebra. Let A be a sub-*-algebra of B(H), and let Θ be a completely positive unit preserving map B(H)⊗B → B(H).
Suppose that for all A ∈ A we have

Θ(A⊗ 1) = A .

Then for all B ∈ B

Θ(1⊗B) ∈ A′ .

Proof: For any density matrix ρ on H, define the quadratic form Dρ on B(H)⊗ B by

Dρ(X,Y ) := trρ
(

Θ(X∗Y )−Θ(X)∗Θ(Y )
)

.

By the Cauchy-Schwartz inequality for the completely positive map Θ this quadratic form is positive semidefinite.
By assumption we have for all A ∈ A:

Dρ(A⊗ 1, A⊗ 1) = trρ
(

Θ(A∗A⊗ 1)−Θ(A⊗ 1)∗Θ(A⊗ 1)
)

= trρ
(

A∗A⊗ 1− (A⊗ 1)∗(A⊗ 1)
)

= 0 .

It then follows from the Cauchy-Schwartz inequality for Dρ itself that Dρ(A⊗ 1,1⊗B) = 0 for all B ∈ B. But then

trρ
(

AΘ(1⊗B)
)

= trρ
(

Θ(A⊗ 1)Θ(1⊗B)
)

= trρ
(

Θ
(

(A⊗ 1)(1⊗B)
))

= trρ
(

Θ
(

(1⊗B)(A ⊗ 1)
))

= trρ
(

Θ(1⊗B)Θ(A⊗ 1)
)

= trρ
(

Θ(1⊗B)A
)

.

Since this holds for all ρ, it follows that Θ(1⊗B) commutes with A. �

By taking A and B abelian, say A generated by some observable A, and B = C

m as above, and by choosing for Θ
some instrument giving information about B, we obtain a statement of the type (3.3).
But there are other possible conclusions. We may choose A = B(H), so that A′ = C · 1H. Then the Heisenberg

principle says that, if we wish to make sure that any possible state ρ on H be unchanged by our measurement, no
information at all concerning ρ can be gained. This is expressed by the following corollary and FIG. 4.

Corollary 2 In the situation of Proposition 1, if for all A ∈ B(H) we have

Θ(A⊗ 1) = A ,

then there is a positive normalized linear form α on B such that for all B ∈ B:

Θ(1⊗B) = α(B) · 1H .

Indeed, the expectation of an outcome observable,

tr(Θ∗ρ)(1⊗B) = tr(ρΘ(1⊗B)) = tr(ρ1H) · tr(αB) = tr(αB)

does not depend on ρ (see FIG. 4.)

IV. PROTECTION AND DARKNESS: THE KNILL-LAFLAMME CONDITION

Let L be a complex Hilbert space of dimension smaller than that of H, and let C : L → H be some isometry. The
range of C is a subspace of H, isomorphic with L. Let Γ : B(H) → B(L) denote the compression map

Γ(X) = C†XC .

Note that Γ is completely positive and identity-preserving. Compression maps are a convenient way of describing
subspaces of a Hilbert space in the language of operations. Note that the operation Γ∗ (in the Schödinger picture)
embeds density matrices on L into the range of C:

Γ∗(ρ) = CρC† .



6

M

M µ

FIG. 4: Heisenberg’s Principle as an implication between diagrams

✟
✟✟

❍
❍❍
Γ ✚

✚✚

❩
❩❩

Ψ ∆

FIG. 5: Strong protection of Γ against Ψ

Physically, Γ is to be viewed as the “coding” operation.

Definition. We say that Γ (or the subspace CL of H) is protected against a channel Φ : B(H) → B(H) if Γ ◦ Φ is
right-invertible, i.e. if there exists a “decoding” operation ∆ : B(L) → B(H) such that

Γ ◦ Φ ◦∆ = idB(L) . (4.1)

By virtue of (2.1) we may picture this state of affairs as in Fig. 5.
The subspace will be called weakly protected against an instrument Ψf : B(H)⊗Cm → B(H) if Γ◦Ψf is right-invertible,
i.e. if there exists a decoding operation ∆f : B(L) → B(H)⊗Cm such that

Γ ◦Ψf ◦∆f = idB(L) . (4.2)

This is symbolically rendered in Fig. 6. The difference with Fig. 5 is that, in the case of weak protection, it is
allowed to use the measurement outcome in the decoding. In the figure the classical information consisting of the
measurement outcome, is symbolized by a straight line.

✟
✟✟

❍
❍❍
Γ ✚

✚✚

❩
❩❩

Ψ ∆f

✟
✟✟

❍
❍❍Πf

FIG. 6: Weak protection of Γ against Ψf

The above notions concern protection of information. Now we consider its availability to the external world.

Definition. Let Ψf : B(H) ⊗ C

m → B(H) denote a quantum measurement (instrument) as described in (2.4).
The subspace CL ⊂ H (or the compression operation Γ = C† · C), will be called dark with respect to Ψf if for all
i = 1, . . . ,m we have

Γ ◦Ψf (1⊗ ei) ∈ C · 1L . (4.3)

This condition can be written in an equivalent form,

C†A†
iAiC = λi · 1L for i = 1, . . . ,m . (4.4)

The subspace CL will be called completely dark for a channel Φ : B(H) → B(H) if it is dark for all Kraus measurements
Ψf obtained by choosing different orthonormal bases in the ancilla space of some Stinespring dilation of Φ; i.e.

∀Y ∈B(M) : Γ ◦Ψ(1⊗ Y ) ∈ C · 1L . (4.5)

In terms of Kraus operators this is equivalent with the Knill-Laflamme condition:

C†A†
iAjC = αi,j · 1L for i, j = 1, . . . ,m . (4.6)
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Interpretation: From (4.3) and (4.4) we see that, if the von Neumann measurement along f is performed, the

measurement outcome i has the same probability ρ
(

Γ ◦ Ψf(1 ⊗ ei)
)

= ρ(C†A†
iAiC) = λi, in all system states ρ, i.e.

no information concerning the state ρ can be read off from the f -measurement on the ancilla.
Complete darkness (i.e. (4.5) or the equivalent Knill-Laflamme condition (4.6)) says that no information whatsoever
concerning the input state reaches the ancilla. Mathematically, the Knill-Laflamme condition says that the range of
the conjugate channel lies entirely in the center C · 1L of B(L). Let us emphasize again that if the space C satisfies
the conditions (4.6) for a map Ψ represented by a particular set of the Kraus operators {Ai}mi=1, then C also satisfies

them for any other set of Kraus operators {Bi}m
′

i=1, used to represent the same map Ψ.
Note also that the set of conditions (4.6), which express complete darkness, naturally defines a state α, on the ancilla
by a relation

Γ ◦Ψ(1⊗ Y ) = tr(αY ) · 1L . (4.7)

satisfied by any Y . This quantum state acting on an auxiliary system is called the error correction matrix, since the
density matrix αij appears in eq. (4.6). Observe that the density operator α depends only on the map Ψ and not
on the concrete form of the Kraus operators Ai, which represent the map and determine the matrix representation
αij of α. Relations between matrix elements of the same state represented in two different basis are governed by the
Schrödinger lemma [12], also called GHJW lemma [19, 20].
We are now going to prove the equivalence of protection and darkness. In the case of strong protection and complete

darkness this reproduces and puts into perspective the result of Knill and Laflamme [6] In that case, if the state α
is pure, then the decoding operation ∆ can be realized by a unitary evolution, Hence the purity constraint for the
error correction matrix, α = α2, is the correct condition for a decoherence free subspace [21] – see also the proof
of Theorem 3. As a quantitative measure, which characterizes to what extent a given protected space is close to a
decoherence free space, one can use the von Neumann entropy of this state, S = −Trα lnα. This code entropy [22]
is equal to zero if the protected space is decoherence free or if the information lost can be recovered by a reversible
unitary operation. Observe that the code entropy S characterizes the map Ψ and the code space C, but does not
depend on the particular Kraus form used to represent Ψ.
In this way we have determined a hierarchy in the set of protected spaces. Every decoherence free subspace belongs

to the class of completely dark subspaces, which correspond to error correction codes. In turn the completely dark
subspaces form a subset of the set of dark subspaces – see Fig. 7.

FIG. 7: Sketch of the hierarchy of protected subspaces.

Theorem 3 (Equivalence of Protection and Darkness) Let H, M, and L be finite dimensional Hilbert spaces.
Let C : L → H and V : H → H⊗M be isometries, and let Φ, Ψ and Ψf be as defined in (2.1), (2.2) and (2.4). Then
CL is weakly protected against the instrument Ψf if and only if CL is dark for Ψf . It is strongly protected against Φ
if and only if it is completely dark for Φ.

Proof:
First assume that CL is strongly protected against Φ, i.e. (4.1) holds for some decoding operation ∆. Let Φ(X) =

Ψ(X ⊗ 1) for some compression Ψ. Define

Θ : B(L)⊗ B(M) → B(L) : X ⊗ Y 7→ Γ ◦Ψ(∆(X)⊗ Y ) .

Then Θ(X ⊗ 1) = X for all X ∈ B(L), and by Corollary 2, since ∆(1) = 1,

Γ ◦Ψ(1⊗ Y ) = Θ(1⊗ Y ) ∈ C · 1 .
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so (4.5) holds, and CL is completely dark for Φ.
Conversely, suppose that CL is completely dark for Ψ, and let α denote the density matrix given by (4.7) Then we
may diagonalize:

tr(αY ) =

m
∑

i=1

ai 〈 fi, Y fi 〉

for some orthonormal set (fi)
m′

i=1 (with m′ ≤ m) of B(M) and positive numbers a1, a2, . . . , am′ summing up to 1. Now
let Ai := IfiV . Then for all ψ ∈ L:

〈AiCψ,AjCψ 〉 =
〈

IfiV Cψ, IfjV Cψ
〉

=
〈

ψ,C†V †(1⊗ |fi〉〈fj |)V Cψ
〉

= α(|fi〉〈fj |) · ‖ψ‖2

= aiδij · ‖ψ‖2 .

So the ranges of AiC and AjC are orthogonal for i 6= j and Ai is homometric on CL. Now define Di for i = 1, 2, . . . ,m′

on these orthogonal ranges by

Diϕ = 0 if ϕ ⊥ Range (AiC), DiAiCψ =
√
aiψ .

(Di “rotates back” the action of AiC.) Let ∆ denote the operation

∆(Z) :=

m′

∑

i=1

D†
iZDi + ρ(Z)





1H −
m′

∑

j=1

D†Dj



 .

for some arbitrary state ρ on B(L). (The term with ρ is intended to ensure that ∆(1L) = 1H.) Then we have for all
Z ∈ B(L):

Γ ◦ Φ ◦∆(Z) =

m′

∑

j=1

m′

∑

i=1

C†A†
jD

†
iZDiAjC

=

m′

∑

j=1

m′

∑

i=1

1

ai
C†A†

jAiCZC
†A†

iAjC =

m′

∑

ij=1

δijaiZ = Z .

So CL is strongly protected against Φ by (4.1).
Now let us prove the equivalence between weak protection and darkness. Assume that CL is weakly protected

against Ψf , i.e. (4.2) holds for some ∆f : B(L) → B(H) ⊗ C

m, say ∆f (X) =
∑m

j=1 ∆
j
f (X) ⊗ ej. Define Θ :

B(H)⊗Cm → B(H) by

Θ(X ⊗ g) :=

m
∑

j=1

g(j)Γ ◦Ψf(∆j(X)⊗ ej) .

Then by (4.2), Θ(X ⊗ 1) = X for all X ∈ B(L). Hence by Corollary 2,

Γ ◦Ψf (1⊗ ei) = Θ(1⊗ ei) ∈ B(H)′ = C · 1L .

So (4.3) holds, and CL is dark for Ψf .
Conversely, assuming that CL is dark for Ψf , then AlC is homometric on L by (4.4), and we may define Dl : H → L

by

DlAlCψ :=
√

λlψ if ψ ∈ L, Dlϕ = 0 if ϕ ⊥ Range (AlC) .

(Briefly: Dl = C†A†
l /
√
λl if λl 6= 0, zero otherwise.) Define the decoding operation ∆f : B(L) → B(H)⊗Cm by

∆f (Z) :=

m
⊕

l=1

(

D†
lZDl + (1H −D†

lDl)ρ(Z)
)
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for some arbitrary state ρ on B(L). Then, for Z ∈ B(L):

Γ ◦Ψf ◦∆f (Z) = Γ ◦Ψf
(

m
∑

l=1

(

D†
lZDl + (1−D†

lDl)ρ(Z)
)

⊗ el

)

= C†V †

(

m
∑

l=1

(

D†
lZDl + (1−D†

lDl)ρ(Z)
)

⊗ |fl〉〈fl|
)

V C

=

m
∑

l=1

C†A†
lD

†
lZDlAlC =

m
∑

l=1

1

λl
(C†A†

lAlC)Z(C
†A†

lAlC) =

m
∑

l=1

λlZ = Z .

�

V. COMPRESSION PROBLEMS AND GENERALIZED NUMERICAL RANGE

For a given channel Φ : B(H) → B(H) we are interested in the protected subspaces of H. These are the subspaces

on which the compressions of A†
iAj act as scalars. In this section we review this compression problem.

Let T be an operator acting on a Hilbert space H of dimension n, say. For any k ≥ 1, define the rank-k numerical
range of T to be the subset of the complex plane given by

Λk(T ) =
{

λ ∈ C : C†TC = λ1 for some C : Ck → H
}

, (5.1)

The elements of Λk(T ) can be called “compression-values” for T , as they are obtained through compressions of T to
a k-dimensional compression subspace. The case k = 1 yields the standard numerical range for operators [23]

Λ1(T ) = {〈ψ|Tψ〉 : |ψ〉 ∈ H , 〈ψ|ψ〉 = 1}. (5.2)

It is clear that

Λ1(T ) ⊇ Λ2(T ) ⊇ . . . ⊇ Λn(T ). (5.3)

The sets Λk(T ), k > 1, are called higher-rank numerical ranges [9, 24]. For any normal operator acting on Hn

this is a compact subset of the complex plane. For unitary operators this set is included inside every convex hull
(co Γ), where Γ is an arbitrary (n + 1 − k)-point subset (counting multiplicities) of the spectrum of T [9]. It was
recently shown that for any normal operator the sets Λk(T ) are convex [25, 26] while further properties of higher rank
numerical range were investigated in [27–29].
The higher rank numerical range is easy to find for any Hermitian operator, T = T † acting on an n-dimensional
Hilbert space H. Let us quote here a useful result proved in [9].

Lemma 4 Let x1 ≤ x2 ≤ · · · ≤ xn denote the ordered spectrum (counting multiplicities) of a hermitian operator T .
The rank-k numerical range of T is given by the interval

Λk(T ) = [xk, xn+1−k] , (5.4)

Note that the higher rank numerical range of a hermitian T is nonempty for any k ≤ int[(n+1)/2]. Let us demonstrate
an explicit construction of a compression to C2 which solves equation (5.1) for a Hermitian matrix T of size n = 4.
The latter’s eigenvalue equation reads T |φi〉 = xi|φi〉. Choose any real λ ∈ Λ2(T ) = [x2, x3]. It may be represented
as a convex combination of two pairs of eigenvalues {x1, x3} and {x2, x4} – see Fig. 8a. Writing

λ = (1 − a)x1 + ax3 = (1− b)x2 + bx4 (5.5)

one obtains the weights

a =
λ− x1
x3 − x1

=: sin2 θ1 and b =
λ− x2
x4 − x2

=: sin2 θ2 (5.6)

which determine real phases θ1 and θ2. These phases allow us to define an isometry C : C2 → H by

C :

{

e1 7→ cos θ1|φ1〉+ sin θ1|φ3〉
e2 7→ cos θ2|φ2〉+ sin θ2|φ4〉 , (5.7)
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Observe that

〈

e1, C
†TCe1

〉

= cos θ1x1〈φ1|ψ1〉+ sin θ1x3〈φ3|ψ1〉 = (1 − a)x1 + ax3 = λ. (5.8)

Similarly, we have
〈

e2, C
†TCe2

〉

= λ. Further, we also have
〈

e1, C
†TCe2

〉

= 0 =
〈

e2, C
†TCe1

〉

. It follows that

C†TC = 1, and the isometry (5.7) provides a solution of the compression problem (5.1) as claimed. Note that one
can select another pairing of eigenvalues, and the choice {x1, x4} and {x2, x3} allows us to get in this way another
subspace C′L spanned by vectors obtained by a superposition of states |φ1〉 with |φ4〉 and |φ2〉 with |φ3〉 respectively.

FIG. 8: Standard numerical range Λ1 and higher rank numerical range Λ2 for a) Hermitian operator T of size 4 and b)
non–degenerate unitary U ∈ U(4). Observe similarity in finding the weights a and b used to construct superposition of states
forming the subspace CL in both problems.

For a given operator T one may try to solve its compression equation (5.1) and look for its numerical range Λk(T ).
Alternatively, one may be interested in the following simple compression problem: For a given operator T find all
possible subspaces CL of a fixed size k which satisfy (5.1).
Furthermore, it is natural to raise a more general, joint compression problem of order M . For a given set of

M operators {T1, . . . TM} acting on Hn find a subspace CL of dimensionality k which solves simultaneously M
compression problems:

C†TmC = λm1 for m = 1, . . . ,M . (5.9)

Note that all compression constants, λm ∈ Λk(Tm), can be different, but the isometry C needs to be the same.

VI. DARK SUBSPACES

In this section we provide several results concerning existence of darks spaces for several classes of quantum maps.

A. Random external fields

Consider a noisy channel Φ given by

ΦU (X) =

r
∑

i=1

qi U
†
iXUi, (6.1)

where all operators Ui are unitary while positive weights qi sum up to unity. Such maps are called random external

fields [30] or random unitary channels. The standard Kraus form (2.3) is obtained by setting Ai =
√
qiUi.

In this Kraus decomposition the whole space, and hence every subspace, is dark. This corresponds to the fact that
the choice between the unitaries, which is made with the probability distribution (q1, . . . , qr), gives no information on
the quantum state. And indeed, knowledge of the “external field”, i.e. of the outcome i, permits us to undo, by the
inverse of Ui, the action of the channel.
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B. Rank two quantum channels

Let us now analyze a rank two channel,

ρ′ = Φ2(ρ) = A1ρA
†
1 +A2ρA

†
2 , (6.2)

Lemma 5 For any Kraus representation of any rank-two channel acting on a system of size N there exist a dark
subspace of dimension k = int[(N + 1)/2].

Proof. We need to solve a joint compression problem (5.9) of order two, for two Hermitian operators T1 = A†
1A1

and T2 = A†
2A2. Due to Lemma 4 there exists a subspace Pk of dimension k = int[(N + 1)/2] which solves the

compression problem for the Hermitian operator T1 of size N . It is also a solution of the compression problem for the
other operator, since the trace preserving condition implies T2 = 1− T1. �

C. Biased permutation channel

Consider a quantum map acting on a system of arbitrary size n described by the Kraus form (2.3). Let us assume
that all Kraus operators are given by ’biased permutations’

Ai = Pi
√

Di , i = 1, . . . , r . (6.3)

where Di is a diagonal matrix containing non-negative entries, and Pi denotes an arbitrary permutation of the N -
element set. Hence all elements of the POVM form diagonal matrices,

Ti = A†
iAi =

√

DiP
†
i Pi
√

Di = Di , (6.4)

in general not proportional to identity. Note that the Kraus operators defined in this way need not to be Hermitian.
To satisfy the trace preserving condition (2.5) we need to assume that

∑r
i=1Di = 1. Let us define an auxiliary

rectangular matrix of size r × N , namely Sim := (Di)mm ≥ 0. Then the above constraints for the matrices Di is
equivalent to the statement that S is stochastic, since the sum of all elements in each column is equal to 1,

r
∑

i=1

Sim = 1 for m = 1, . . . , N . (6.5)

A map described by Kraus operators fulfilling relations (6.3) and (6.5) will be called a biased permutation channel.

We are going to construct a dark space for a wide class of such channels. For simplicity assume that the size of the
system is even, N = 2k. Let us additionally assume that all elements in each row of B are ordered (increasingly or
decreasingly) and that the matrix S enjoys a symmetry relation,

Si,m + Si,n−m+1 = const =: λi for i = 1, . . . , r; m = 1, . . . , k = n/2 . (6.6)

Then the numbers λi can be defined by a sum of the entries in each row, λi =
2
N

∑N
m=1 Sim.

Lemma 6 Assume that a biased permutation channel acting on a system of size N = 2k possesses the symmetry
relation (6.6). Then it has a dark space of dimension k = n/2.

Proof. We need to find a joint compression subspace for the set of r elements of POVM given by diagonal
matrices Di, with i = 1, . . . , r. Since these matrices commute, they have the same set of eigenvectors, denoted by
|vm〉, m = 1, . . . , N . Due to symmetry relation (6.6) we know that the barycenter of each spectrum, λi belongs to
the higher rank numerical range, Λk(Di). Furthermore, this relation shows that (for any i) the number λi can be
represented as a sum of two eigenvalues of Di with the same weights, λi =

1
2 (Di)mm+ 1

2 (Di)m′m′ with m′ = n+1−m.
By construction this property holds for all operators Di, i = 1, . . . r. Hence the general construction of the higher
order numerical range for Hermitian operators [10] implies that the subspace

Ck :=

k
∑

i=1

|ψi〉〈ψi| where |ψi〉 :=
1√
2
(|vi〉+ |v1−i+N 〉) (6.7)
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fulfills the joint compression problem for all operators Ti = Di, i = 1, . . . r. Hence this subspace is dark as advertised.
�

To watch the above construction in action consider a three biased permutation channel acting on a two qubit
system. Hence we set r = 3 and N = 4, and assume that five real weights satisfy 0 < a < b < x/2 < 1/2 and
0 < c < d < x/2. They can be used to define the channel by a stochastic matrix S

S =





a b x− b x− a
c d x− d x− c
a′ b′ b′′ a′′



 , (6.8)

where a′ = 1− a− c, b′ = 1− b− d, a′′ = 1− 2x+ a+ c and b′′ = 1− 2x+ b+ d. Note that this matrix satisfies the
symmetry condition (6.6), the elements in each row are ordered, while mean weights in each row read λ1 = λ2 = x/2
and λ3 = 2(1− x).
To complete the definition of the channel we need to specify three permutation matrice of size four. For instance let

us choose P1 = P(1,2,3,4), P2 = P(1,2),(3,4) and P3 = P(1,4,3,2), where according to the standard notion, the subscripts
contain the permutation cycles. Then the biased permutation channel is defined by the three Kraus operators

A1 =









0
√
b 0 0

0 0
√
x− b 0

0 0 0
√
x− a√

a 0 0 0









, A2 =









0
√
d 0 0√

c 0 0 0
0 0 0

√
x− c

0 0
√
x− d 0









, A3 =









0 0 0
√
a′′√

a′ 0 0 0

0
√
b′ 0 0

0 0
√
b′′ 0









, (6.9)

which satisfy the trace preserving condition (2.5).
Since the barycenter λi of the spectrum of the POVM element Ti = Di (given by a row of matrix (6.8)), is placed

symmetrically, in all three cases it can be represented by a convex combination of pairs of eigenvalues with weights
equal to 1/2. Thus we define two pure states

|ψ1〉 :=
1√
2
(|v1〉+ |v4〉) , |ψ2〉 :=

1√
2
(|v2〉+ |v3〉) , (6.10)

and the two dimensional subspace spanned by them, C = |ψ1〉〈ψ1|+ |ψ2〉〈ψ2|. It is easy to verify that the subspace
C satisfies C†T1C = λ11 = C†T2C while C†T3C = λ31 so this space is dark. Note that the subspace CL cannot be

used to design an error correcting code since C†A†
1A2C /∈ C · 1.

D. Composed systems and separable channels

Consider a bipartite system of size n = nA × nB. A quantum operation Φ acting on this bipartite system is called
local, if it has a tensor product structure, Φ = ΦA ⊗ ΦB, where both maps ΦA and ΦB are completely positive
and preserve the identity. If for both individual operations, ΦA and ΦB , there exist protected subspaces Ck and Ql
respectively, then the product subspace Ck⊗Ql of size kl is also a protected subspace for the composite map ΦA⊗ΦB.
Similar protected subspaces of the product form can be constructed for a wider class of separable maps (see e.g.

[12]),

ρ′ = Φ∗(ρ) =

r
∑

i=1

(Ai ⊗Bi)ρ(Ai ⊗Bi)
†. (6.11)

Assume that a subspace Ck ∈ HNA
is a solution of the joint compression problem for the set of r operators A†

iAi,

while a subspace Ql ∈ HNB
does the job for the set of r operators B†

iBi. It is then easy to see that the product
subspace Ck ⊗Ql of dimension kl is a dark subspace for the separable map (6.11).
It is straightforward to extend lemmas 3 and 4 for separable maps acting on composite systems and apply them

to construct protected subspaces with a product structure. On the other hand, if for certain problems such product
code subspace do not exist, one may still find a code subspace spanned by entangled states. Such a problem for the
tri–unitary model is solved in following section.
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VII. UNITARY NOISE AND ERROR CORRECTION CODES

In this section we are going to study multiunitary noise (6.1), also called random external fields, and look for
existence of error correction codes, i.e. completely protected subspaces. In general the number r of unitary operators
defining the channel can be arbitrary but we will restrict our attention to the cases in which this number is small.

A. Bi–unitary noise model

The case in which r = 2, referred to as bi-unitary noise was recently analyzed in [10, 24]. Let us rewrite the
dynamics in the form

ρ′ = Φ∗(ρ) = qV ρ1 V
†
1 + (1− q)V2ρV

†
2 . (7.1)

and assume that we deal with the system of two qubits. Then both unitary matrices V1 and V2 belong to U(4) while
probability p belongs to [0, 1]. The problem of finding the compression C for the above map is shown to be equivalent
to the case

ρ′′ = Φ∗(ρ) = qρ+ (1− q)UρU † (7.2)

where U = V †
1 V2.

Thus the error correction matrix α of size two defined by eq. (4.7) reads

α =

(

q
√

q(1− q)λ
√

q(1− q)λ∗ 1− q

)

(7.3)

where λ is solution of the compression problem for U

C†UC = λ · 1 . (7.4)

Thus to find the error correction space for the bi–unitary model it is sufficient to solve the compression equation for
a single operator U . A solution exists for any unitary U [10], but for simplicity we will consider here the generic case
if the spectrum of U is not degenerated. Assume that the phases these unimodular numbers z1, ..., z4 are ordered and
that |ψi〉 denote the corresponding eigenvectors.
Let λ denote the intersection point between two chords of the unit circle, z1z3 and z2z4; compare Fig. 8b. This point
can be represented as a convex combination of each pair of complex eigenvalues,

λ = (1− a)z1 + az3 = (1− b)z2 + bz4 , (7.5)

where the non–negative weights read

a =
λ− z1
z3 − z1

=: sin2 θ1 and b =
λ− z2
z4 − z2

=: sin2 θ2 (7.6)

and determine real phases θ1 and θ2. Note similarity with respect to the construction used in the Hermitian case, in
which (5.5) represents a convex combination of points on the real axis. In an analogy with the reasoning performed
for a hermitian T we define according to (5.7) an orthonormal pair of vectors |ψ1〉 and |ψ2〉 and define the associated
isometry C : ej 7→ ψj . Since 〈Uψ1|ψ1〉 = λ = 〈Uψ2|ψ2〉 and 〈Uψ1|ψ2〉 = 0 = 〈Uψ2|ψ1〉 then CUC = λ1. Therefore
λ belongs to Λ2(U) as claimed and the range of C provides the error correction code for the bi-unitray noise (7.2)
acting on a two-qubit system.
In the case of doubly degenerated spectrum of U the complex number λ is equal to the degenerated eigenvalue,

so its radius, |λ|, is equal to unity. In this case the matrix α given in (4.6) represents a pure state, α = α2, so the
two–dimensional subspace spanned by both eigenvectors corresponding to the degenerated eigenvalues is decoherence
free.
Bi–unitary noise model for higher dimensional systems was analyzed in [24]. It was shown in this work that for a

generic U of size N there exists a code subspace of dimensionality k = int[(N + 2)/3]. This result implies that for a
system of m qubits and a generic U of size N = 2m there exists an error correction code supported on m− 2 qubits.
Furthermore, if N = dm and d ≥ 3, there exists a code supported on m− 1 quantum systems of size d.
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B. Tri–unitary noise model

Consider now a model of noise described by three unitary operations acting on a bipartite, N = 2×NB system,

ρ′ = Φ∗(ρ) = q1V1ρV
†
1 + q2V2ρW

†
2 + (1− q1 − q2)V3ρV

†
3 . (7.7)

Performing a unitary rotation in analogy to (7.2) we obtain an equivalent form

ρ′′ = Φ∗(ρ) = q1ρ+ q2U1ρU
†
1 + (1 − q1 − q2)U2ρU

†
2 . (7.8)

The model is thus characterized by two unitary matrices of size N , namely U1 = V †
1 V2 and U2 = V †

1 V3. and two
weights q1 and q2, which we assume to be positive with their sum smaller than unity.
To find a simplest error correction code for this model one needs to find a two-dimensional subspace, which forms

a joint solution of three compression problems






C†U1C = λU1
1

C†U2C = λU2
1

C†WC = λW1
, (7.9)

where W = U †
1U2. Each of the above three problems may be solved using the notion of the higher rank numerical

range of a unitary matrix. However, for generic unitary matrices U1 and U2 of size 4 the corresponding compression
subspaces do differ. Thus for a typical choice of the unitary matrices the tri–unitary noise model will not have an
error correction code, for which it is required that the subspace C solves all three problems simultaneously.
There exist several examples of two commuting matrices U1 and U2 of size N = 4, such that they possess the same

solution C of the compression problem. However, to assure that it coincides with the solution of the same problem

for W = U †
1U2, we will analyze an exemplary system of size n = 2 × 3. Consider two unitary matrices of a tensor

product form,
{

U1 = U †
A ⊗ UB

U2 = UA ⊗ UB
(7.10)

where

UA =





1 0 0
0 e−iα 0
0 0 eiα



 and UB =

(

1 0
0 eiξ

)

. (7.11)

Observe that U1 and U2 do commute, so they share the same set of eigenvectors. Assume that the phases satisfy
α ∈ (π/2, π) and ξ ∈

(

0,min{α, 2(π − α)}
)

. Then the ordered spectra of both matrices read

U1 = diag
{

1, eiξ, eiα, ei(α+ξ), e−iα, ei(ξ−α)
}

, U2 = diag
{

1, eiξ, e−iα, ei(ξ−α), eiα, ei(α+ξ)
}

, (7.12)

and differ only by the order of the eigenvalues. Both unitary matrices are represented in Fig. 9 in which zi, i = 1, . . . , 6
denote the ordered eigenvalues of U1 while |ϕi〉, i = 1, . . . , 6 are eigenvectors of this matrix. The same states form
also the set of eigenvectors of U2, but they correspond to other eigenvalues. Let z′i denote the ordered eigenvalues of
U2. Then |ϕ3〉 corresponds to z′3 = z5 while |ϕ5〉 corresponds to z′5 = z3.
The third of the unitaries also has also a tensor product form,

W = U †
1U2 = (U †

A ⊗ UB)
†(UA ⊗ UB) = U2

A ⊗ 12. (7.13)

Hence the spectrum of W , denoted by z′′i , consists of three pairs of doubly degenerated eigenvalues, W =

diag
{

1, 1, e−2iα, e−2iα, e2iα, e2iα
}

, see Fig. 10.

Numerical range of rank two for matrices U1, U2 and W is shown in the pictured as a gray region. Each point
λ ∈ Λ2(U1) offers a subspace C2 which forms a solution of the first of three equations (7.9). However, the other two
equations restrict further constraints for λ.
To construct an error correction code for the tri-unitary noise model we are going to follow the strategy used above

for solving the compression problem: we split the Hilbert space into a direct sum of two subspaces of size three, and
try to construct a single state in each subspace. More formally we define the subspace

C2 =

2
∑

i=1

|ψi〉〈ψi| (7.14)
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where each state is obtained by a coherent superposition of three eigenstates of U1,
{

|ψ1〉 =
√
a1|ϕ1〉+

√
a3|ϕ3〉+

√
a5|ϕ5〉

|ψ2〉 =
√
a2|ϕ2〉+

√
a4|ϕ4〉+

√
a6|ϕ6〉 . (7.15)

Since the unitary operators Ui can be expressed as tensor product of diagonal matrices (e.g. U2 = UA ⊗ UB), their
joint set of eigenvectors consits of product pure states only. On the other hand, the states |ψ1〉 and |ψ2〉 are by
construction entangled.

z1

z2

z3

z4

z5

z6

Rez

Imz

|j ñ1

|j ñ5

|j ñ4

|j ñ3

|j ñ6

|j ñ2

x
x

x

Ë (U )2 1

ë

a

U1

a)

z1

z2

z3

z4

z5

z6

Rez

Imz

|j ñ1

|j ñ3

|j ñ6

|j ñ5

|j ñ4

|j ñ2

x
x

x

Ë (U )2 2

a

ëU2

b)

FIG. 9: Numerical range (gray space): a) Λ2(U1); b) Λ2(U2)

The weights a1 are defined as a weights obtained by representing point λ by a convex combination of the triples of
eigenvalues. Since we wish to get a space C being a joint solution of all three equations (7.9), we are going to require
that the same weights ai can be used to form the compression value λ as a combination of both triples of eigenvalues
for each spectrum,







λU1
= a1z1 + a3z3 + a5z5 = a2z2 + a4z4 + a6z6

λU2
= a1z

′
1 + a3z

′
3 + a5z

′
5 = a2z

′
2 + a4z

′
4 + a6z

′
6

λW = a1z
′′
1 + a3z

′′
3 + a5z

′′
5 = a2z

′′
2 + a4z

′′
4 + a6z

′′
6

(7.16)

where zi, z
′
i and z

′′
i denote ordered spectra of U1, U2 and W , respectively. It is now clear that for a generic choice of

U1 and U2 (which implies W = U †
1U2), such a system has no solutions. However, if both diagonal matrices are of the

special form (7.12), there exists a solution of the problem. The weights ai satisfy







































a1 = a2 = 1 +
1

−1 + cosα

a3 = a4 =
1

2− 2 cosα

a5 = a6 =
1

2− 2 cosα

(7.17)

and imply the following compression values






λU1
= 0

λU2
= 0

λW = −1− 2 cosα
. (7.18)

Due to the symmetry of the problem the latter number λW is real.
Substituting the weights (7.17) into (7.15) we get an explicit form (7.14) of the subspace C. It is now easy to check

that this subspace satisfies simultaneously all three equations (7.9) with compression values given by (7.18), hence it
provides a two dimensional error correction code for this noise model. This solution is correct for any unitaries U1

and U2 having any set of eigenvectors |ϕi〉, i = 1, . . . , 6 and spectra given by (7.12) and parameterized by phases α
and ξ.
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The above construction can be generalized for a tri–unitary noise model acting on larger system of size N = 3×K
[31]. An error correction code of size K exists in this case, if matrices U1 and U2 have the tensor product form (7.10),

where UA = diag
{

1, eiα, e−iα
}

as before and UB = diag
{

1, eiξ2 , eiξ3 , . . . , eiξK
}

. The code subspace C =
∑K
i=1 |ψi〉〈ψi|

is then obtained in an analogous way, by representing the Hilbert space as a direct product ofK subspaces of dimension
three each and constructing each state |ψi〉 as a coherent superposition of three eigenstates of U1 corresponding to a
triple of eigenvalues zl, zl+K and zl+2K for l = 1, . . .K. Note that the code space constructed here for the bipartite
system does not have the tensor product structure, since it is spanned by entangled states (7.15).
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Rez

Imz
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|j ñ5
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|j ñ6

|j ñ2

Ë (W)2

ëW

-2a

2a

FIG. 10: Numerical range Λ2(W ) is represented by a dark triangle

VIII. CONCLUSIONS

This paper concerns finite dimensional instruments or Kraus measurements, acting on a quantum system with
Hilbert space H. We have proved a version of Heisenberg’s Principle, which connects ‘darkness’ to ‘protection’ of a
subspace L of H. ‘Darkness’ expresses the lack of visibility of the information contained in L from the measurement
outcome, and ‘protection’ the degree to which this information remains present in the quantum system. Complete
darkness corresponds to complete recoverability of information as in error correction codes.
We have presented examples of darkness and protection: instruments arising from random external fields, arbitrary

rank 2 channels, and biased permutation channels. Bi-unitary noise models were analyzed recently in regard to their
error correction properties in [10, 24]. Here we have also considered tri-unitary noise. For a a certain class of tri-
unitary noise models acting on a 3 ×K quantum system, we have explicitly constructed an error correction code of
size K. Although this particular noise model might be considered as not very realistic, we tend to believe that the
technique proposed can be applied to a broader class of quantum systems.
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