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Abstract Generalisation of the quantum weakest precondition result of D’Hondt and

Panangaden is presented. In particular the most general notion of quantum predicate

as positive operator valued measure (termed POVM) is introduced. The previously

known quantum weakest precondition result has been extended to cover the case of

POVM playing the role of a quantum predicate. Additionally, our result is valid in

infinite dimension case and also holds for a quantum programs defined as a positive

but not necessary completely positive transformations of a quantum states.

1 Introduction

The formalism of 0–1 quantum predicates calculus was invented by von Neumann

already in 1936 [4] and [17]. The main discovery was that the corresponding calculus

significantly differs from the classical one (which is described in terms of the notion of

Boolean algebra) and the development of the so–called quantum logic was achieved. In

the past there were many activities in this fascinating area (for example see [22] and

[8], [7]).

The recent developments in the quantum information area [19] renewed our interest

in creating a general quantum predicate calculus in the context of the recent advances

of quantum languages and quantum programming concepts [25], [3], [26] and [12].

In the works [20] and [21] Bernard Ömer introduced the first quantum programming

language QCL. Paolo Zuliani also provides tools to compile quantum programs in

Roman Gielerak
Institute of Control and Computation Engineering,
Faculty of Electrical Engineering,
Computer Science and Telecommunications,
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[28]. An extensive bibliographic review about the quantum programming theory and

quantum languages was presented in [11].

The weakest-precondition (in literature known as the weakest liberal precondition

– termed WP) is a well-known paradigm of a goal-directed programming methodology

and semantics for a programming language. The weakest-precondition was developed

in [1] and [2] and popularised in [10]. This notion is connected with the Hoare triple

{f1}P{f2} [14], where f1 and f2 denote some predicates and P is the program. In

other words, the Hoare triple says: if f1 is true for some entry state and after executing

P we obtain the final state, then f2 is also true in the final state.

For any program p and predicate f2, we define the predicate WP(p, f2) as

s |= WP(p, f2) ⇔ ∀t∈S p(s) −→ t⇒ (t |= f2) (1)

WP is the weakest precondition operator and the predicate WP(p, f2) is the weakest

one satisfying the Hoare triple {WP(p, f2)}p{f2}. The Hoare triple can be expressed

with the wp operator |= f1 ⇒ WP(p, f2).

The strongest postcondition (termed SP) is defined by

t |= SP(p, f1) ⇔ ∃s∈S p(s) −→ t ∧ s |= f1. (2)

From the definition of the Hoare triple we obtain that |= SP(p, f1) ⇒ f2 is equivalent

to {f1}p{f2}.

In the work [15] the existence of weakest preconditions for quantum predicates

defined as hermitian operators with spectral radius smaller than one was presented.

However, the Kraus representation for completely positive finite dimensional superop-

erators was used in their proof in a very essential way. In particular the proof in [15]

is valid when the following conditions are satisfied:

HP(1) the considered quantum systems are finite-dimensional,

HP(2) the allowed quantum programs are defined as a completely positive transforma-

tions,

HP(3) the admissible predicates are defined as hermitian operators with the operator

norm smaller than one.

However, in many realistic situations all the listed assumptions HP(1)–HP(3) made

in [15] are too restrictive. For example, a serious candidate for the realistic quantum

computer, the computing machine with coherent pulses of light [24] is the point where

infinite dimensional character of the corresponding quantum registers comes into play.

Secondly in the so called active interpretation of predicate, the major role played by the

very notion of predicates is to control the evolution of the state of quantum register1.

There the well known problems connected with quantum measurements do occur. In

particular the possible noisy character of quantum measurement is definitely excluded

from the consideration by HP(3). In other words, the condition HP(3) restricts our

considerations essentially to the orthodox von Neumann type of measurement only.

Finally, although there are very plausible arguments in favour of completely positive

maps as the only realistic transformations of the corresponding spaces of quantum

1 Another major role played by predicates is the role they play in the program developments
as they describe state characteristic. This is so called passive (from the point of view of running
program) interpretation which is important ingredient of the semantic analysis of computer
programs
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states (the possible occurrence of positive maps in non-unitary quantum evolution is

not definitely excluded [18], [6]).

In this paper we demonstrate result on the existence of the quantum weakest pre-

conditions to cover the situations where none of the assumptions HP(1)–HP(3) are

fulfilled. The main result is formulated precisely as Theorem (1) in Sec. (2). What is

surprising is that, the proof of our generalisation of the theorem due to [15] is very

simple. The main argument is the use of Hilbert-Schmidt duality instead of Kraus

representation as it was done in [15].

2 Formulation of the result

Let Σ ⊂ R
d be a Borel measurable subset of d-dimensional Euclidean space R

d and

let H be a separable complex Hilbert space. L(H) will stand for linear continuous

operators on H. The σ-algebra of sets of Σ is denoted as β(Σ).

A positive operator valued measure (POVM) on (Σ, β(Σ)) is a σ-additive map F

F : β(Σ) −→ L(H) (3)

and FΣ ≤ IH, where IH is the unit operator on H . The space of such measurements

will be denoted as POVM(Σ,H).

A natural partial order � can be defined in POVM(Σ,H). Let F,G ∈ POVM(Σ,H)

then F � G iff

∀A∈β(Σ) F(A) = FA � GA = G(A) (4)

where � is the natural ordering relation in L(H) i.e.

FA � GA ⇔ ∀ψ∈H 〈ψ|FAψ〉 ≤ 〈ψ|GAψ〉 (5)

Lemma 1 For any Borel set Σ ⊂ Rd the partially ordered space denoted as (POVM(Σ,H),�

) is a completely partially ordered space (cpos).

Proof Let (F(α))α∈A be any α-ordered net in POVM(Σ,H). For any |ψ〉 ∈ H, A ∈ Σ

we define

〈ψ|GAψ〉 = sup
α

〈ψ|F
(α)
A

ψ〉. (6)

From the assumption on the uniform boundedness of elements from POVM(Σ,H) and

the polarisation identities it follows that (6) defines an operator GA and such that

||GA|| ≤ 1. Let (An)n=1,...,∞ be any family of pairwise disjoint subsets of β(Σ), then

the use of the version of the dominated convergence theorem allows us to formulate

GS

∞

n=1
An

= Σ
∞
n=1GAn

(7)

in the strong sense because of uniform boundedness in operator norm topology.

In conclusion, the operator valued map

A ∈ β(Σ) −→ GA ∈ L(H) (8)

defines a POVM as shown above.
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By the (generalised) complete quantum predicate we mean an arbitrary element

F ∈ POVM(Σ,H) which is complete. This means that FΣ = IH, where IH is the unit

operator on H. From the additivity of F it follows that for any A ∈ Σ, FA ≤ IH in the

sense that:

∀|ψ〉∈H 〈ψ|FAψ〉 ≤ 〈ψ|ψ〉 (9)

from which it follows that for any A ∈ Σ the operator norm ||FA|| of FA obeys

||FA|| ≤ 1.

For G ∈ L(H) let

r(G) = sup{ |λ| | λ ∈ σ(G) } (10)

where σ(G) means the spectrum of G. The number r(G) is called the spectral norm of

G. It is known that in the case of selfadjoint G the spectral norm of G is equal to the

operator norm of G [27].

Summarising our discussion let us note the following lemma:

Lemma 2 Let F ∈ POVM(Σ,H) be a quantum predicate. Then for any A ∈ Σ:

||FA|| = r(FA) and ||FA|| ≤ 1. (11)

The set of all not necessary complete POVM on (Σ,H) will be called the space of (gen-

eralised) quantum predicates and denoted as Pre(Σ,H) and some times abbreviated

as Pre(H) in the following.

Remark 1 In the paper [15] the assumption that the spectral norm of the hermitean

operator (playing the role of quantum predicate there) is less or equal to one has been

formulated. As we have remarked this is equivalent to the assumption that the operator

norm is not exceding the value 1.

For a given separable Hilbert space H the corresponding space of states E(H) is

usually defined as the set of non-negative, trace-class operators ρ such that Tr(ρ) = 1.

A space of admissible transformations of the space E(H) is defined as the space of

linear positive maps:

C : E(H) −→ E(H) (12)

that are trace preserving.

Any such map will be called (generalised) quantum program and the space of all

such maps will be denoted as QP(H).

It is well known that the ring of trace-class operators on H denoted as L1(H)

forms a two-sided ⋆-ideal in the C⋆-algebra L(H) and therefore for any ρ ∈ E(H),

F ∈ Pre(Σ,H) and C ∈ QP(H):

TrH(FAC(ρ)) ≤ 1 (13)

To prove (13) we remark that any A ∈ L(H) and ρ ∈ L1(H) the following inequality

holds (Simon 1970, p. 218):

||Aρ||1 ≤ ||A|| · ||ρ||1. (14)

Thus, taking into account Lemma (2) the proof of (13) follows.

The equation (13) allows us to formulate the following lemma.
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Lemma 3 For any C ∈ QP(H) the action C⋆ on Pre(Σ,H) is defined by:

F ∈ Pre(Σ,H) → C
⋆
F ∈ Pre(Σ,H) (15)

where

∀ρ∈E(H) Tr((C
⋆
FA)ρ) = Tr(FAC(ρ)) (16)

is action of QP(H) on the space Pre(Σ,H).

Proof From ρ ∈ L1(H) and the spectral theorem it follows ρ = Σnλn|ψh〉〈ψn|, λn ≥ 0,

limn→∞ λn = 0 and it is enough to assume that ρ = |ψ〉〈ψ| for some |ψ〉 ∈ H with

|〈ψ|ψ〉| = 1.

Therefore, the polarisation identities shows that the identities:

〈ψ|(C⋆FA)ψ〉 = Tr(FAC(|ψ〉〈ψ|)) (17)

define a bounded operator C⋆F for any A ∈ β(Σ). The σ-additivity of C⋆F is also easy

to prove.

The duality between L(H) and L1(H) based on Tr will be called Hilbert-Schmidt

duality and will be also denoted as

〈·|·〉HS : (ρ,A) ∈ L1(H)× L(H) −→ 〈ρ|A〉HS = Tr(ρA) (18)

Definition 1 For a given H, F ∈ Pre(Σ,H), ρ ∈ E(H) the function

sat(ρ,F) : A ∈ Σ −→ sat(ρ, FA) = Tr(ρFA) (19)

will be called the satisfiability of the quantum predicate F in the state ρ. In particular

the state ρ satisfies the predicate F iff the function sat(ρ, F ) is nonzero positive valued.

From Def. (1) it follows that the function of satisfiability sat(ρ,F) is always a

bounded measure on β(Σ).

Definition 2 An s-order, denoted as
s
� is defined on the space of quantum predicates

Pre(Σ,H) in the following way:

F
s
� G iff ∀A∈β(Σ) ∀ρ∈E(H) sat(ρ,F)(A) ≤ sat(ρ,G)(A) (20)

Similarly, it can be proved that the semi-ordered space (Pre(Σ,H),
s
�) is a cpos.

Lemma 4 For Σ ⊂ R
d and separable Hilbert space H the semi-ordered space denoted

as (Pre(Σ,H),
s
�) is completely partially ordered space.

For a given quantum predicate F ∈ Pre(Σ,H) the set of preconditions for F with

respect to quantum program C ∈ QP(H) and denoted as {C}(F) is defined as:

{C}(F) = {G ∈ Pre(Σ,H)} : G
s
� F} (21)

Definition 3 A weakest precondition for a predicate F ∈ Pre(Σ,H) with respect to

a quantum program C ∈ QP(H) denoted (if it exists) as WP(C)(F) is the predicate

G ∈ Pre(Σ,H) such that G = WP(C)(F) = sup({C}F).
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Theorem 1 Let H be a separable Hilbert space and let C ∈ QP(H) be a given quantum

program and let F ∈ Pre(Σ,H). Then there exists unique G ∈ Pre(Σ,H) such that

G = WP(C)F (22)

Proof By taking A ∈ β(Σ), we can write

Tr(F (A)C(ρ)) = 〈FA|Cρ〉HS(H) = 〈C⋆FA|ρ〉HS(H). (23)

By the Hilbert-Schmidt duality we can define a new POVM(C⋆F) on (Σ,H) by the

last identity. Thus, we can expect that C⋆F = WP(C)F. Let H ∈ {C}(F), then for

some A ∈ β(Σ)

Tr(HAρ) ≤ Tr(FAC(ρ)) = 〈FA|Cρ〉HS = 〈C⋆FA|ρ〉HS = Tr(C⋆FA)ρ (24)

and

sat(H, ρ) ≤ sat(C⋆F, ρ) (25)

then C⋆F is majorising for the set {C}F. Obviously, from the very construction of C⋆F

it follows that C⋆F ∈ {C}F.

Remark 2 The action of CP(H) on the spaces POVM(H) were studied more carefully

in [5] and some very interesting results on this were obtained. Whether those results

can be extended to the action of QP(H) and whether this kind of results could be

efficient in the quantum programming area in our opinion deserve further studies.

Remark 3 The theorem presented in work [15] is a special case of our theorem 1. If we

assume that the quantum predicate is given by the corresponding F ∈ POVM(Σ,H)

with one atom support,

F = {F1} (26)

then our theorem gives (still with some generalisation) the D’Hondt and Panangaden

result.

Remark 4 In the case of quantum programms defined as completely positive maps the

infinite dimensional version (the C⋆ version) of the Kraus theorem known as Stinespring

representation theorem (saying that any unital CP map on C⋆-algebra is the compres-

sion of some inner ⋆-homorphism) can be used instead of the use of Hilbert-Schmidt

duality [23]. However the corresponding constructions are much more complicated as

we have to pass to the corresponding dilation spaces.

3 Summary and conclusions

The most general notion of quantum predicate using the notion (connected to an

a priori noisy measurement process) of positive operator valued measures has been

introduced in this note.

The existence of the corresponding quantum weakest preconditions has been proved.

Additionally, our result is valid in infinite dimensional situations and for positive but

not necessary completely positive quantum programs.

It would be of great importance to provide some examples showing that our gen-

eralised quantum predicate notion can be used for semantic analysis of quantum pro-

grams. Especially important seems to be the question of providing interesting examples

where previously known tools and results are not directly applicable. This will be a

main topic of a forthcoming paper [13].
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6. Carteret H.A., Terno D.R., Życzkowski K.: Dynamics beyond completely posi-
tive maps: Some properties and applications, Phys. Rev. A 77, 042113, 2008,
arXiv:quant-ph/0512167v3.

7. Dalla Chiara, M.L.: Quantum logic, in: D.M. Gabbay, F. Guenthner (Eds.), Handbook of
Philosophical Logic, Vol. III, 1986, pp. 427–469. Revised version in: Handbook of Philosoph-
ical Logic, Vol. 6, 2nd edn., Kluwer, Dordrecht, pp. 129–228, 2001.

8. Dalla Chiara M.L.: Quantum logic and physical modalities, J. Philos. Logic 6, pp. 391–404,
1977.

9. Choi M.D.: Completely positive linear maps on complex matrices, Linear Algebra and its
Applications, Vol. 10, pp. 285–290, 1975.

10. Dijkstra E. W.: A Discipline of Programming, Prentice-Hall, Englewood Cliffs, N.J., 1976.
11. Gay S.J.: Quantum Programming Languages: Survey and Bibliography, Mathematical
Structures in Computer Science Vol. 16, No. 4, 2006.

12. Grattage J.: QML: A functional quantum programming language, PhdThesis, 2006.
13. Gielerak R., Sawerwain M.: General quantum predicate as semantics tools in quantum

programming theory, in preparation.
14. Hoare C.: An axiomatic basis for computer programming, Communications of the ACM,
Vol. 12, pp. 576–583, 1969.

15. D’Hondt, E., Panangaden, P.: Quantum weakest preconditions, Mathematical Structures
in Computer Science, Vol. 16, No. 3, pp. 429–451, 2006.

16. Kraus K.: State, Effects, and Operations, Berlin, Springer-Verlag, 1983.
17. Mackey G.: Mathematical foundations of Quantum Mechanics, W.A. Benjamin, 1963.
18. Majewski W.A.: On non-completely positive quantum dynamical maps on spin chains,
Phys. A: Math. Theor. 40, pp. 11539-11545, arXiv:quant-ph/0606176x2, 2007.

19. Nielsen M., Chuang I. L.: Quantum Computation and Quantum Information, Cambridge
University Press, 2000.

20. Ömer B.: Structured Quantum Programming, PhD thesis, Technical University of Vienna,
Austria, 2003.
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