Skip to main content
Log in

Exact canonical decomposition of two-qubit operators in terms of CNOT

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The canonical decomposition for two-qubit operators has proven very useful for applications in quantum computing. This decomposition generates equivalence classes up to local quantum gates. We provide a variety of complete, explicit decompositions of given two-qubit operators in terms of single, double, and triple controlled-NOT (CNOT) gates. By analytically addressing the needed pre- and post-tensor product factors, we demonstrate that exact results are possible, even when a parameter is included. The examples given are of interest to superconducting qubit, spin-based, dipolar molecule, and other quantum information processing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shende V.V., Bullock S.S., Markov I.L.: Recognizing small-circuit structure in two qubit operators. Phys. Rev. A 70, 012310 (2004)

    Article  ADS  Google Scholar 

  2. Bullock S.S., Markov I.L.: Arbitrary two-qubit computation in 23 elementary gates. Phys. Rev. A 68, 012318 (2003)

    Article  ADS  Google Scholar 

  3. Vidal G., Dawson C.M.: Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys. Rev. A 69, 010301(R) (2004)

    ADS  Google Scholar 

  4. Coffey M.W., Deiotte R., Semi T.: Comment on “universal quantum circuit for two-qubit transformations with three controlled-NOT gates” and “recognizing small-circuit structure in two-qubit operators”. Phys. Rev. A 77, 066301 (2008)

    Article  ADS  Google Scholar 

  5. Vatan F., Williams C.: Optimal quantum circuits for general two-qubit gates. Phys. Rev. A 69, 032315 (2004)

    Article  ADS  Google Scholar 

  6. Childs A.M., Haselgrove H.L., Nielsen M.A.: Lower bounds on the complexity of simulating quantum gates. Phys. Rev. A 68, 052311 (2003)

    Article  ADS  Google Scholar 

  7. Zhang J., Vala J., Whaley K.B., Sastry S.: Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67, 042313 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  8. Makhlin Y.: Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations. Quant. Info. Proc. 1, 243 (2002)

    Article  MathSciNet  Google Scholar 

  9. Rezakhani A.T.: Characterization of two-qubit perfect entanglers. Phys. Rev. A 70, 052313 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  10. Coffey M.W., Colburn G.G.: Feasibility of the controlled-NOT gate from certain model Hamiltonians. J. Phys. A 40, 9463 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  12. Shende V.V., Markov I.L., Bullock S.S.: Finding small two-qubit circuits. Proc. SPIE 5436, 348 (2004)

    Article  ADS  Google Scholar 

  13. Grajcar M. et al.: Switchable resonant coupling of flux qubits. Phys. Rev. B 74, 172505 (2006) cond-mat/0605484 (2006)

    Article  ADS  Google Scholar 

  14. Niskanen A.O., Nakamura Y., Tsai J.-S.: Tunable coupling scheme for flux qubits at the optimal point. Phys. Rev. B 73, 094506 (2006)

    Article  ADS  Google Scholar 

  15. Niskanen A.O., Vartiainen J.J., Salomaa M.M.: Optimal multiqubit operations for Josephson charge qubits. Phys. Rev. Lett. 90, 197901 (2007)

    Article  ADS  Google Scholar 

  16. Zhang, J., Whaley, K. B.: Generation of quantum logic operations from physical Hamiltonians. Phys. Rev. A 71, 052317 (2005); quant-ph/0412169 (2004)

    Google Scholar 

  17. Kuznetsova E. et al.: Analysis of experimental feasibility of polar-molecule-based phase gates. Phys. Rev. A 78, 012313 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Coffey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffey, M.W., Deiotte, R. Exact canonical decomposition of two-qubit operators in terms of CNOT. Quantum Inf Process 9, 681–691 (2010). https://doi.org/10.1007/s11128-009-0156-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0156-3

Keywords

PACS

Navigation