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Abstract A fruitful way of studying physical theories is via the question whether
the possible physical states and different kinds of correlations in each theory can be
shared to different parties. Over the past few years it has become clear that both quan-
tum entanglement and non-locality (i.e., correlations that violate Bell-type inequali-
ties) have limited shareability properties and can sometimes even be monogamous. We
give a self-contained review of these results and present new results on the shareability
of different kinds of correlations, including local, quantum and no-signalling corre-
lations. This includes an alternative simpler proof of the Toner-Verstraete monogamy
inequality for quantum correlations, as well as a strengthening thereof. Further, the
relationship between sharing non-local quantum correlations and sharing mixed entan-
gled states is investigated, and already for the simplest case of bi-partite correlations
and qubits this is shown to be non-trivial. Also, a recently proposed new interpretation
of Bell’s theorem by Schumacher in terms of shareability of correlations is critically
assessed. Finally, the relevance of monogamy of non-local correlations for secure
quantum key distribution is pointed out, and in this regard it is stressed that not all
non-local correlations are monogamous.
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1 Introduction

It is more and more realised that entanglement is a physical resource [1]. This has
been the driving force behind the exploding field of quantum information theory, and
has led to many operational and information-theoretic insights. More recently, and
less well-known, it has been noted that non-locality (i.e., correlations that violate
Bell-type inequalities) is also a resource for information theoretic tasks [2]. In this
paper one aspect of their usefulness as a resource will be considered, namely that both
entanglement and non-locality have limited shareability properties,1 and, in fact, can
sometimes even be monogamous [3–6]: consider three parties a, b, c each holding
a qubit, then if a’s and b’s qubits are maximally entangled, then c’s qubit must be
completely unentangled to either a’s or b’s. Similarly if a and b are correlated in such
a way that they violate the Clauser-Horne-Shimony-Holt (CHSH) inequality [8] (this
will also be called ‘non-locally correlated’), then neither a nor b be can be correlated
in such a way (i.e., non-locally) to c in any no-signalling theory. It has been shown
that such correlations can be used as a resource to distribute a secret key which is
secure against eavesdroppers which are only constrained by the fact that any informa-
tion accessible to them must be compatible with no-signalling, which is roughly the
impossibility of arbitrarily fast signalling [9].

Classically none of this is possible since one does not have such monogamy trade-
offs for states or correlations: all classical probability distributions can be shared [6].
Indeed, if parties a, b and c have bits instead of quantum bits (qubits) and if a’s bit is
perfectly correlated to b’s bit then there is no restriction on how a’s bit is correlated
to c’s bit. This difference in shareability of states and in shareability of correlations
is in fact one of the fundamental differences between classical and quantum physics,
although it has only recently been properly studied. Fortunately, in the last few years
we have been able to witness a number of fundamental results on both the shareability
of quantum states and of correlations [3–6,10–12].

The purpose of this paper is two-fold. Firstly, it intends to give a review of the recent
results in both these fields (i.e., shareability of quantum states and of correlations),
and, secondly, it adds new results to the latter, after which both fields are compared.
The review part of the paper draws heavily on work by Toner [6] and Masanes et al.
[10], but it is intended to be self-contained and tries to use a simple mathematical
framework in terms of familiar mathematical objects of joint probability distributions
for correlations. It uses the well-known CHSH inequality for expectation values of
the product of local outcomes; it leaves aside the formulations in terms of information
theoretic interactive proof systems and non-local games setups [6,7].

More specifically, Sect. 2 reviews the monogamy and shareability of entanglement,
and Sect. 3 is devoted to the monogamy and shareability of correlations. In Sect. 3.1
five different kinds of correlation are introduced whose shareability and monogamy
aspects are reviewed in Sects. 3.2 and 3.3. Here we also prove that both unrestricted

1 Here ‘shareability’ is meant kinematical and should not be thought of in a dynamical sense. But note that
the kinematical shareability results are of course restrictive for any dynamics that one may wish to employ
to actually describe a sharing process. Any such dynamics is bound by the constraints set by the kinematics;
for the latter indicate what states of the desired kind exist at all in the theory’s state space.
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general correlations and so-called partially-local ones can be shared to any number
of parties (called ∞-shareable). Next, Sect. 3.4 gives an alternative simpler proof
of the Toner-Verstraete monogamy inequality [5] for quantum correlations, and this
inequality is strengthened as well. Some of the results reviewed in this section have
lead Schumacher [13] to argue for a new view on Bell’s theorem, namely that it is a
theorem about the shareability of correlations, and that, contrary to communis opinio,
its physical message does not at all deal with issues of locality or local realism. This
argument will be presented and critically assessed in Sect. 3.5. In Sect. 4 we compare
the results of Sects. 2 and 3: we investigate the relationship between shareability of
non-local quantum correlations and shareability of mixed entangled states, and already
for the simplest case of bi-partite correlations this relationship will be shown to be
non-trivial. For example, shareability of non-local correlations implies shareability of
entanglement, but not vice versa. Section 5 addresses the possibilities for cryptogra-
phy of extracting a secure secret key from correlations that are monogamous. It will
be pointed out that some non-local correlations indeed suffice for this task, but that in
general not all non-local correlations are monogamous (shown in Sect. 4) and that this
fact should be crucially taken into account. Finally, we will end with a short discussion
in Sect. 6.

2 Shareability and monogamy of states

Let us first consider the shareability of states; that of correlations will be studied in
the next section. Classical states can be shared among many parties because one can
just copy the state. Formally we can represented such a classical copying procedure
on a phase or configuration space where one uses the Cartesian product structure to
relate systems and subsystems. That is, it is possible to extend any bi-partite pure state
Sab1 = Sa ×Sb1 of the joint party ab1 to N −1 other parties b2, . . . , bN by considering
the state Sa × Sb1 × Sb2 × · · · × SbN , where Sb1 = Sbi ,∀i . This ensures that the states
Sabi are identical to the original state Sab1 . The bi-partite state Sab1 can thus be shared
indefinitely. All this remains true under convex decompositions of pure states, and
thus also for the case of mixed classical states.

However, in quantum mechanics things are different. If a pure quantum state of
two systems is entangled,2 then none of the two systems can be entangled with a third
system. This can be easily seen. Suppose that systems3 a and b are in a pure entangled
state. Then when the system ab is considered as part of a larger system, the reduced
density operator for ab must by assumption be a pure state. However, for the com-
posite system ab (or for any of its subsystems a or b) to be entangled with another
system, the reduced density operator of ab must be a mixed state. But since it is by

2 A state ρ of a bi-partite system ab is entangled if and only if it can not be written as a convex sum of
product states: ρ �= ∑

i piρ
a
i ⊗ρb

j , with
∑

i, j pi, j = 1, 0 ≤ pi, j ≤ 1 and ρa
i , ρ

b
j states of the subsystems

a, b, respectively. For the multipartite generalisation, which is not at all trivial, see [14].
3 For ease of notation we will use the same symbols to refer to parties and the systems they possess, e.g.,
party a possesses system a.
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assumption pure, no entanglement between ab and any other system can exist. This
feature is referred to as the monogamy of pure state entanglement.4

This monogamy can also be understood as a consequence of the linearity of quan-
tum mechanics that is also responsible for the no-cloning theorem [16,17]. For suppose
that party a has a qubit which is maximally pure state entangled to both a qubit held
by party b and a qubit held by party c. Party a thus has a single qubit coupled to two
perfect entangled quantum channels, which this party could exploit to teleport two
perfect copies of an unknown input state, thereby violating the no-cloning theorem,
and thus the linearity of quantum mechanics [18].

If the state of two systems is not a pure entangled state but a mixed entangled state,
then it is possible that both of the two systems are entangled to a third system. For
example, the so-called W -state |ψ〉 = (| 001〉 + | 010〉 + | 100〉)/√3 has bi-partite
reduced states that are all identical and entangled. This feature is called ‘sharing of
mixed state entanglement’, or ‘promiscuity of entanglement’. Entanglement is thus
strictly speaking only monogamous in the case of pure entangled states. In the case of
mixed entangled states it can be promiscuous. But this promiscuity is not unbounded:
although some entangled bi-partite states may be shareable with some finite number of
parties, no entangled bi-partite state can be shared with an infinite number of parties.5

Here a bi-partite quantum state ρab is said to be N -shareable when it is possible to
find a quantum state ρab1b2...bN such that ρab = ρab1 = ρab2 = · · · = ρabN , where
ρabk is the reduced state for parties a and bk . Consider the following theorem [19,20]:
A bi-partite quantum state is N -shareable for all N (also called ∞-shareable [10]) iff
it is separable. Thus no bi-partite entangled state, pure or mixed, is N -shareable for
all N .

The limited shareability of entanglement was first quantified by Coffman et al. [3].
They gave a trade-off relation between how entangled a is with b, and how entangled
a is with c in a three-qubit system abc that is in a pure state, using the measure of
bi-partite entanglement called the tangle [4]. It states that τ(ρab)+τ(ρac) ≤ τ(ρa(bc))

where τ(ρab) is the tangle6 between a and b, analogous for τ(ρac) and τ(ρa(bc)) is the
bi-partite entanglement7 across the bipartition a-bc. In general, τ can vary between 0
and 1, but monogamy constrains the entanglement (as quantified by τ ) that party a can
have with each of parties b and c. The generalisation to, possibly mixed, multi-qubit

4 This is sometimes confusingly referred to as the claim that in quantum theory a system can be pure state
entangled with only one other system [15]. But what about the GHZ state (| 000〉 + | 111〉)/√2 ? All three
parties are entangled to each other in this pure state, so this seems to be a counterexample to the claim.
What is actually meant is that if a pure state of two systems is entangled, then none of the two systems can
be entangled with a third system. This is the formulation we will use.
5 This is also referred to as ‘monogamy in an asymptotic sense’ by [18], but we believe that this feature is
better captured by the term ‘no unbounded promiscuity’.
6 The tangle τ(ρab) is the square of the concurrence C(ρab) := max{0,√λ1 − √

λ2 − √
λ3 − √

λ4},
where the λi are the eigenvalues of the matrix ρab(σy ⊗ σy)ρ

∗
ab(σy ⊗ σy) in non-decreasing order, with

σy the Pauli-spin matrix for the y-direction.
7 In case of three qubits the tangle τ(ρa(bc)) is equal to 4 detρa , with ρa = Trbc[|ψ〉〈ψ |] and |ψ〉 the
pure three-qubit state.
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states has been recently proven by Osborne and Verstraete [4]:

τ(ρab1)+ τ(ρab2)+ · · · + τ(ρabN ) ≤ τ(ρa(b1b2...bN )). (1)

This is a general constraint on distributed entanglement and which quantifies the frus-
tration of entanglement between different parties. For further investigations of the
monogamy of entanglement, see also [11,21,22].

3 Shareability and monogamy of correlations

3.1 Kinds of correlations

We will review five different kinds of correlations that will be studied, as well as
several useful mathematical characteristics of these correlations.8

General unrestricted correlations. Consider N parties, labeled by 1, 2, . . . , N , each
holding a physical system that is to be measured using a finite set of different observ-
ables. Denote by A j the observable (random variable) that party j chooses (also called
the setting A j ) and by a j the corresponding measurement outcomes. We assume there
to be only a finite number of discrete outcomes. The outcomes can be correlated in an
arbitrary way. A general way of describing this situation, independent of the under-
lying physical model, is by a set of joint probability distributions for the outcomes,
conditioned on the settings chosen by the N parties, where the correlations are captured
in terms of these joint probability distributions. They are denoted by

P(a1, . . . , aN |A1, . . . , AN ). (2)

These probability distributions are assumed to be positive

P(a1, . . . , aN |A1, . . . , AN ) ≥ 0, (3)

and obey the normalization conditions

∑

a1,...,aN

P(a1, . . . , aN |A1, . . . , AN ) = 1. (4)

We need not demand that the probabilities should not be greater than 1 because this
follows from them being positive and from the normalization conditions. We will now
put further restrictions besides normalization on the probability distributions (2) that
are motivated by physical considerations.

No-signalling correlations. A no-signalling correlation is a correlation P(a1, . . . ,

aN |A1, . . . , AN ) such that one subset of parties, say parties 1, 2, . . . , k, cannot
signal to the other parties k − 1, . . . , N by changing their measurement device

8 This is a minimal review leaving out the discussion of the correlations in terms of convex sets and facets
of polytopes. See [12,10], and chapter 2 in [23] for such a more comprehensive overview.
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settings A1, . . . , Ak . Mathematically this is expressed as follows. The marginal prob-
ability distribution for each subset of parties only depends on the corresponding
observables measured by the parties in the subset, e.g., for all outcomes a1, . . . , ak :
P(a1, . . . , ak |A1, . . . , AN ) = P(a1, . . . , ak |A1, . . . , Ak).

These conditions can all be derived from the following condition [12]. For each
k ∈ {1, . . . , N } the marginal distribution that is obtained when tracing out ak is inde-
pendent of what observable (Ak or A′

k) is measured by party k:

∑

ak

P(a1, . . . , ak, . . . , aN |A1, . . . , Ak, . . . , AN )

=
∑

ak

P(a1, . . . , ak, . . . , aN |A1, . . . , A′
k, . . . , AN ), (5)

for all outcomes a1, . . . , ak−1, ak+1, . . . , aN and all settings A1, . . . , Ak, A′
k, . . . AN .

This set of conditions ensures that all marginal probabilities are independent of the
settings corresponding to the outcomes that are no longer considered. In particular, 5
the defines the marginal

P(a1, . . . , ak−1, ak+1, . . . , aN |A1, . . . , Ak−1, Ak+1, . . . , AN ), (6)

for the N − 1 parties not including party k. No-signalling ensures that it is not needed
to specify whether Ak or A′

k is being measured by party k.
Local correlations. Local correlations are those that can be obtained if the par-

ties are non-communicating and share classical information, i.e., they only have local
operations and local hidden variables (also called shared randomness) as a resource.
We take this to mean that these correlations can be written as

P(a1, . . . , aN |A1, . . . , AN ) =
∫

�

dλp(λ)P(a1|A1, λ) . . . P(aN |AN , λ), (7)

where λ ∈ � is the value of the shared local hidden variable,� the space of all hidden
variables and p(λ) is the probability that a particular value of λ occurs. Note that p(λ)
is independent of the outcomes a j and settings A j , i.e., the settings are assumed to be
‘free variables’ [24]. Furthermore, P(a1|A1, λ) is the probability that outcome a1 is
obtained by party 1 given that the observable measured was A1 and the shared hidden
variable was λ, and similarly for the other terms P(ak |Ak, λ). A correlation that is not
local will be called non-local.

Partially-local correlations. Partially-local correlations are those that can be
obtained from an N -partite system in which subsets of the N parties form extended
systems, whose internal states can be correlated in any way (e.g., signalling), which
however behave local with respect to each other [25,26]. Suppose provisionally that
parties 1, . . . , k form such a subset and the remaining parties k + 1, . . . , N form
another subset. The partially-local correlations can then be written as
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Monogamy of correlations versus monogamy of entanglement 279

P(a1, . . . , aN |A1, . . . , AN ) =
∫

�

dλp(λ)P(a1, . . . , ak |A1, . . . , Ak, λ)

×P(aN−k, . . . , aN |AN−k, . . . , AN , λ), (8)

The probabilities on the right hand side need not factorise any further. In case they
would all fully factorise we retrieve the set of local correlations described above.

Formulas similar to (8) with different partitions of the N -parties into two subsets,
i.e., for different choices of the composing parties and different values of k, describe
other possibilities to give partially-local correlations. Convex combinations of these
possibilities are also admissible. We need not consider decomposition into more than
two subsystems since any two subsystems in such a decomposition can be considered
jointly as parts of one subsystem still uncorrelated with respect to the others [26].

Quantum correlations. Lastly, we consider the class of correlations that are obtained
by general measurements on quantum states (i.e., those that can be generated if the
parties share quantum states). These can be written as

P(a1, . . . , aN |A1, . . . , AN ) = Tr[M A1
a1

⊗ · · · ⊗ M AN
aN
ρ]. (9)

Here ρ is a quantum state (i.e., a unit trace semi-definite positive operator) on a
Hilbert space H = H1 ⊗ · · · ⊗ HN , where H j is the quantum state space of the

system held by party j . The sets {M A1
a1 , . . . ,M AN

aN } define what is called a positive

operator valued measure (POVM), i.e., a set of positive operators {M
A j
a j } satisfying

∑
a j

M
A j
a j = 1,∀A j . Of course, all operators M

A j
a j must commute for different j in

order for the joint probability distribution to be well defined, but this is ensured since
for different j the operators are defined for different subsystems (with each their own

Hilbert space) and are therefore commuting. Note that (9) is linear in both M
A j
a j and

ρ, which is a crucial feature of quantum mechanics.
Quantum correlations are no-signalling and therefore the marginal probabilities

derived from such correlations are defined in the same way as was done for no-signal-
ling correlations (cf. Eq. 6). For example, the marginal probability for party 1 is given
by P(a1|A1) = Tr[M A1

a1 ρ
1], where ρ1 is the reduced state for party 1.

3.2 Shareability of correlations

General unrestricted correlations and local correlations can be shared. The latter fact is
proven by Masanes et al. [10] and the first we will prove here. However, first we need
the relevant definitions. Shareability of a general unrestricted probability distribution
is defined as follows (where without loss of generality we restrict ourselves to share-
ability of bi-partite distributions). A bi-partite distribution P(a, b1|A, B1, . . . , BN )

is N -shareable with respect to the second party if an (N + 1)-partite distri-
bution P(a, b1, . . . , bN |A, B1, . . . , BN ) exists that is symmetric with respect to
(b1, B1), (b2, B2), . . . , (bN , BN ) and with marginals P(a, bi |A, B1, . . . , BN ) equal
to the original distribution P(a, b1|A, B1, . . . , BN ), for all i . For notational clarity we
use bi and Bi (instead of ai and Ai ) to denote outcomes and observables, respectively
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for the parties other than the first party. If a distribution is shareable for all N it is
called ∞-shareable [10].

Shareability of a no-signalling probability distribution is defined analogously: A
no-signalling P(a, b1|A, B1) is N -shareable with respect to the second party if there
exist an (N + 1)-partite distribution P(a, b1, . . . , bN |A, B1, . . . , BN ) being symmet-
ric with respect to (b1, B1), (b2, B2), . . . , (bN , BN ) with marginals P(a, bi |A, Bi )

equal to the original distribution P(a, b1|A, B1), for all i . The difference between
shareability of unrestricted correlations and of no-signalling correlations is that in the
first case the marginals depend on all N + 1 settings, whereas in the latter case they
only depend on the two settings A and Bi .

Suppose we are given a general unrestricted correlation P(a, b1|A, B1, . . . , BN ).
We can then construct

P(a, b1, . . . , bN |A, B1, . . . , BN ) = P(a, b1|A, B1, . . . , BN )δb1,b2 · · · δb1,bN ,

(10)

which has the same marginals P(a, bi |A, B1, . . . , BN ) equal to the original distribu-
tion P(a, b1|A, B1, . . . , BN ). This holds for all i , thereby proving the ∞-shareability.
Thus an unrestricted correlation can be shared for all N . If we restrict the distributions
to be no-signalling, Masanes et al. [10] proved that if the distribution P(a, b1|A, B1)

is N -shareable then it satisfies all Bell-type inequalities with N or less different set-
tings B1 (this extends a similar result for quantum states by Terhal et al. [27] and
Werner [28]).

This result implies that there exists a local model of the form (7) for correlations
P(a, b|A, B) where the first party has an arbitrary number and the second party has
N possible measurements if the correlations are N -shareable [10]. Indeed, suppose
P(a, b|A, B) is shareable to N parties (labelled Bi , i = 1, . . . , N ). The correlations
between A performed on party 1 and Bi on party 2 are thus the same as the correla-
tions between measurements of A on party 1 and Bi on the extra party Bi . Therefore,
the N measurements B1, . . . , BN performed by party 2 can be viewed as one single
joint measurement performed by N parties Bi (i = 1, . . . , N ), and it is known that
there always exists a local model when all but one of the parties perform only one
measurement. In particular, this implies that two-shareable states can not violate the
CHSH inequality; see also Sect. 3.5 that assesses the foundational relevance of this
result. Furthermore, Masanes et al. [10] proved that ∞-shareability implies that the
N -partite distribution is local (in the sense of Eq. 7) for all N and that the converse
holds as well. Local correlations can thus be shared indefinitely, and vice versa.

3.3 Monogamy of correlations

Because general unrestricted correlations and local ones can be shared indefinitely
they both will not show any monogamy constraints. This implies that partially-
local correlations (see Eq. 8) also do not show any monogamy, since these are
combinations of local and general unrestricted correlations between subsystems
of the N -systems. However, and perhaps surprisingly, quantum and no-signalling
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Monogamy of correlations versus monogamy of entanglement 281

correlations are not ∞-shareable and they must therefore show monogamy constraints,
as will now see.9 First, consider a very strong monogamy property for extremal
no-signalling correlations, mentioned by Barrett et al. [12]. Suppose one has some
no-signalling three-party probability distribution P(a, b, c|A, B,C) for parties a, b
and c. In case the marginal distribution P(a, b|A, B) of system ab is an extremal
no-signalling correlation10 then it cannot be correlated to the third system c:

P(a, b, c|A, B,C) = P(a, b|A, B)P(c|C), (11)

in other words, the extremal correlation P(a, b|A, B) is completely monogamous.
Barrett et al. [12] show that this implies that all Bell-type inequalities for which the
maximal violation consistent with no-signalling is attained by a unique correlation have
monogamy constraints. An example is the CHSH inequality, as will be shown below.

Extremal no-signalling correlations thus show monogamy, but what about non-
extremal no-signalling correlations? Just as was the case for quantum states where
non-extremal (mixed state) entanglement can be shared (See Eq. 1), non-extremal no-
signalling correlations can be shared as well. This can be shown in terms of the well-
known Bell-type experimental setup where each of the two parties a and b implements
two possible dichotomous observables, A, A′ and B, B ′, respectively. The CHSH
inequality |〈Bab〉| ≤ 2 is the only non-trivial local Bell-type inequality for this setup
[8]. Here Bab = AB + AB ′ + A′ B − A′ B ′ is called the CHSH polynomial (or CHSH
operator in the quantum case) for the bi-partite system ab.

No-signalling correlations obey the following tight trade-off relation in terms of
the CHSH operators Bab and Bac for party ab and ac respectively, as first proven by
Toner [6]:

|〈Bab〉ns| + |〈Bac〉ns| ≤ 4. (12)

Here Bac = AC + AC ′ + A′C − A′C ′ is the CHSH polynomial for parties a and c,
and 〈Bab〉ns is the expectation value11 of the CHSH operator Bab for a no-signalling
correlation 5, and analogous for 〈Bac〉ns. Tightness was shown by Toner [6]: for any
pair 〈Bab〉ns, 〈Bac〉ns that obeys (12) there is a no-signalling correlation with these
expectation values. A particular multipartite generalisation of (12) for a large class
of linear multi-partite Bell-type inequalities has been recently achieved by Pawłowski
and Brukner [29].

This trade-off relation is depicted in the tilted square of Fig. 1. Extremal no-sig-
nalling correlations can attain |〈Bab〉ns| = 4, but then necessarily |〈Bac〉ns| = 0, and

9 Intuitively this can be understood as follows. Because the class of general unrestricted correlations is
richer than the class of no-signalling correlations, and in fact contains all possible correlations, there is no
possibility of leaving this class of correlations when sharing them. To the contrary, the class of no-signalling
correlations is rather limited; indeed, it turns out that not all such correlations can be shared while requiring
that one stays in this class. When trying to construct the shared no-signalling states one will end up with
resulting states that are signalling rather than no-signalling.
10 A no-signalling correlation is extremal iff it is a vertex of the bi-partite no-signalling polytope which
means that any convex decomposition in terms of no-signalling correlations is unique.
11 The subscript ‘ns’ indicates that the expectation value is for no-signalling correlations (5).
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Fig. 1 The space
〈Bab〉 − 〈Bac〉 of allowable
values for the CHSH operators
for systems ab and ac. General
unrestricted correlations can
reach the absolute maximum
which is the largest square with
edge points (±4,±4). All
quantum correlations lie within
the circle, and all no-signalling
correlations lie within the tilted
square. For comparison the local
correlations are also shown.
These lie within the square with
edge points (±2,±2). The
correlations obtainable by
orthogonal measurements on
separable two-qubit states lie
within the smallest square with
edge points (±√

2,±√
2).

Figure adapted from [5]

ab

ac

2 2

2

2

4

vice versa (this is monogamy of extremal no-signalling correlations), whereas non-
extremal ones are shareable since the correlation terms |〈Bab〉ns| and |〈Bac〉ns| can
both be non-zero at the same time. But note that in case the no-signalling correlations
are non-local they can not be shared, i.e., it is not possible that |〈Bab〉ns| ≥ 2 and also
|〈Bac〉ns| ≥ 2 (a fact already shown in [10]). This shows that if these non-local corre-
lations can be shared they must be signalling. Alternatively, this can also be phrased as
follows. In order to be non-local with both party b and c, and also remain no-signalling,
party a is faced with an unsolvable dilemma in choosing her measurements, which
would need to be different in Bab and Bac. This feature is termed ‘monogamy of non-
local correlations’. As a corollary it follows that if N + 1 parties a, b1, b2, . . . , bN

share some correlations (e.g., via a quantum state) and each chooses to measure one
of two observables, then a violates the CHSH inequality with at most one party bi .

We have seen that for general unrestricted correlations no monogamy constraints
hold. They can thus reach the largest square in Fig. 1, i.e., |〈Bab〉| and |〈Bac〉| are
not mutually constrained and can each obtain a value of 4, so as to give the absolute
maximum of the left hand side of (12) which is the value 8. The monogamy bound
(12) therefore gives a way of discriminating no-signalling from general correlations:
if it is violated the correlations must be signalling. These lie outside the tilted square
but inside the largest square in Fig. 1.

For local correlations no such trade-off as in Eq. (12) or (13) holds. Indeed, it is
possible to have12 both |〈Bab〉local| = 2 and |〈Bac〉local| = 2, see also Fig. 1. This
reflects the fact that local correlations are always shareable.

Let us finally consider correlations that result from making local measurements
on quantum systems. All quantum correlations that violate the CHSH inequality are

12 Here 〈Bab〉local is the expectation value of the CHSH operator for local correlations (7) between party
a and b.
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monogamous as follows from the following tight trade-off inequality for a three-partite
system abc proven by Toner and Verstraete [5]:13

〈Bab〉2
qm + 〈Bac〉2

qm ≤ 8, (13)

where Bab is the CHSH operator for parties a and b, and analogous for Bac (here, and
in the following, the subscript ’qm’ denotes that the expectation value is determined for
quantum correlations 9). The correlations admissible by this trade-off relation lie in the
interior of the circle in Fig. 1. Toner and Verstraete [5] have explicitly shown tightness.
Thus the inequality 13 gives exactly the allowed values of (〈Bab〉qm, 〈Bac〉qm). Note
that as a corollary the Tsirelson inequality [32] follows: |〈Bab〉qm|, |〈Bac〉qm| ≤ 2

√
2.

Just as was the case for no-signalling correlations, quantum correlations show an
interesting trade-off relationship: In case the quantum correlations between party a
and b are non-local (i.e., when |〈Bab〉qm| > 2) the correlations between parties a
and c cannot be non-local (i.e., necessarily |〈Bac〉qm| ≤ 2), and vice versa (cf. [31]).
These non-local quantum correlations can thus not be shared. Furthermore, in case
they are maximally non-local, i.e., |〈Bab〉qm| = 2

√
2 the other must be uncorrelated,

i.e., it must be that |〈Bac〉qm| = 0, and vice versa.
Note that if ab and ac each share a maximally entangled pair, there are sets of

measurements such that either 〈Bab〉qm or 〈Bac〉qm is 2
√

2. But, as noted by Toner
[6], this does not contradict (13): it is required that the measurements performed by
party a are the same in both Bab and in Bac. This is analogous to the requirement
that was needed in Sect. 2 to show monogamy of entanglement, namely that b and c
are entangled with the same qubit of a.

The correlations that separable quantum states allow for are shareable. Indeed, in the
〈Bab〉qm-〈Bac〉qm plane of Fig. 1 such correlations can reach the full square with edge
length 2. However, when considering qubits and measurements that are restricted to
orthogonal ones only (e.g., Pauli spin observables σx , σy, σz in the x, y, z-directions)
one obtains tighter bounds; see [33]. In such a case the possible values are restricted
to the smallest square of Fig. 1: |〈Bab〉qm|, |〈Bac〉qm| ≤ √

2. But again there is no
trade-off on the shareability of the correlations in separable states since this full square
can be reached.

3.4 A stronger monogamy relation for non-local quantum correlations

We will now give an alternative simpler proof of the inequality (13) than was given
by Toner and Verstraete [5], and one that also allows us to strengthen this result as
well. The proof uses the idea that (13), which describes the interior of a circle in the
〈Bab〉-〈Bac〉 plane, is equivalent to the interior of the set of tangents to this circle. It
is thus a compact way of writing the following infinite set of linear equalities

S = max
θ

〈Sθ 〉qm ≤ 2
√

2, (14)

13 It should be noted that early results in this direction have been obtained by Krenn and Svozil [30]
(Sect. 5) and by Scarani and Gisin [31] (Theorem 1).
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where we have used
√

x2 + y2 = maxθ (cos θ x + sin θ y), and where Sθ =
cos θ Bab + sin θ Bac.

We will now prove this by showing that |〈Bab cos θ + Bac sin θ〉qm| ≤ 2
√

2 for
all θ , using a method presented by [34] in a different context. In this proof we only
consider quantum correlations, so for brevity we drop the subscript ‘qm’ from the
expectation values. Let us first write

Bab cos θ + Bac sin θ = (A + A′)B cos θ + (A − A′)B ′ cos θ

+(A + A′)C sin θ + (A − A′)C sin θ. (15)

Next we use the fact that in this context it is sufficient to consider qubits and projective
measurements that are real and traceless only [35,5]. Let us thus express A and A′ in
terms of orthogonal Pauli observables σz, σx for measurements in the z and x direc-
tion, respectively: A = cos γ σx + sin γ σz and A′ = cos γ σx − sin γ σz . This gives
A + A′ = 2 cos γ σx , A − A′ = 2 sin γ σz . Taking the expectation value of (15) gives

|〈Bab cos θ〉ab + 〈Bac sin θ〉ac| = 2|〈σx B〉ab cos γ cos θ

+〈σz B ′〉ab sin γ cos θ + 〈σx C〉ac cos γ sin θ

+〈σzC ′〉ac sin γ sin θ | (16)

The right hand side can be considered to be twice the absolute value of the inproduct
of the two four-dimensional vectors a = (〈σx B〉ab, 〈σz B ′〉ab, 〈σx C〉ac, 〈σzC ′〉ac) and
b = (cos γ cos θ, sin γ cos θ, cos γ sin θ, sin γ sin θ). If we now apply the Cauchy-
Schwartz inequality |(a, b)| ≤ ||a|| ||b|| we find, for all θ :

|〈Bab cos θ〉ab + 〈Bac sin θ〉ac| ≤ 2
√

〈σx B〉2
ab + 〈σz B ′〉2

ab + 〈σx C〉2
ac + 〈σzC ′〉2

ac

×
√

cos2 γ (cos2 θ+ sin2 θ)+ sin2 γ (cos2 θ+ sin2 θ)

≤ 2
√

2(〈σx 〉2
a + 〈σz〉2

a) ≤ 2
√

2
√

1 − 〈σy〉2
a (17)

≤ 2
√

2. (18)

This proves (14). Here we have used that 〈σx 〉2
qm + 〈σy〉2

qm + 〈σz〉2
qm ≤ 1 for all sin-

gle qubit quantum states, and for clarity we have used the subscripts ab, ac and a to
indicate with respect to which subsystems the quantum expectation values are taken.
Using (17) we obtain

〈Bab〉2
qm + 〈Bac〉2

qm ≤ 8(1 − 〈σy〉2
a), (19)

which strengthens the original monogamy trade-off inequality (13). An alternative,
but similar strengthening of (13) was already found in [5]: 〈Bab〉2

qm + 〈Bac〉2
qm ≤

8(1 − 〈σyσy〉2
bc).

So far we have only focused on subsystems ab and ac, and not on the subsystem bc.
One could thus also consider the quantity 〈Bbc〉qm. The above method would give the
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intersection of the three cylinders 〈Bab〉2
qm + 〈Bac〉2

qm ≤ 8, 〈Bab〉2
qm + 〈Bbc〉2

qm ≤
8, 〈Bac〉2

qm + 〈Bbc〉2
qm ≤ 8. But it is known [5] that this bound is not tight.

It might be tempting to think that because of these results we could have the fol-
lowing inequality, which is even stronger than (13):

〈Bab〉2
qm + 〈Bac〉2

qm + 〈Bbc〉2
qm ≤ 8. (20)

However, this is not true. For a pure separable state (e.g., | 000〉) the left hand
side has a maximum of 12, which violates (20). But inequality (20) is true for the
exceptional case that we have maximal violation for one pair, say ab, since we know
from (13) that 〈Bac〉qm and 〈Bbc〉qm for the other two pairs must then be zero. We
can see the monogamy trade-off at work: in case of maximal violation of the CHSH
inequality (i.e., for maximal entanglement) the left hand side of (20) has a maximum
of 8, whereas in case of no violation of the CHSH inequality it allows for a maximum
value of 12, which can be obtained by pure separable states. Thus we see the opposite
behavior from what is happening in the ordinary CHSH inequality: for the expression
considered here (i.e., the left-hand side of (20)), separability gives higher values, and
entanglement necessarily lower values.

A correct bound is obtained from (17) and the two similar ones for the other two
expressions 〈Bab〉2

qm + 〈Bbc〉2
qm and 〈Bac〉2

qm + 〈Bbc〉2
qm. This gives:

〈Bab〉2
qm + 〈Bac〉2

qm + 〈Bbc〉2
qm ≤ 12 − 4(〈σy〉2

a + 〈σy〉2
b + 〈σy〉2

c). (21)

However, it is unknown if this inequality is tight.

3.5 Interpreting Bell’s theorem

In Sect. 3.2 it was pointed out that non-local correlations, either quantum or
no-signalling, can be completely monogamous, whereas ∞-shareability and local-
ity of correlations are equivalent properties. Furthermore, it was shown that there
exists a local model of the form (7) for correlations P(a, b|A, B) when the first party
has an arbitrary number and the second party has N possible measurements if and
only if the correlations are N -shareable.

This has led Schumacher [13] to argue for a new view on Bell’s theorem, which,
according to communis opinio, states that quantum mechanics is non-local:14 it is a
theorem about the shareability of correlations, and its physical message is not at all
about issues of locality or local realism.15 Schumacher argues that 2-shareability of
correlations is sufficient to get a conflict with quantum mechanics because it implies
the CHSH inequality from which we already know that such a conflict follows. He also
stresses that the assumption of 2-shareability of correlations is a weaker assumption

14 To be more specific: Bell’s theorem states that quantum correlations exist that cannot be reproduced in
terms of local correlations of the form 7.
15 For an outline of the doctrine of local realism see [24] or chapter 2 of [23].
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Fig. 2 Parties 1, 2, 1′ and 2′
measure observables
A,C, B′, D′, respectively.
Dotted lines indicate which
parties are jointly considered in
the expression 22. Figure taken
from Schumacher [13]

than the assumption of full-blown local realism, since the latter implies ∞-shareabil-
ity. From this he concludes that the real physical message of Bell’s theorem is that
quantum mechanical correlations are in general not 2-shareable; and not that quantum
mechanics is non-local in some way or another.

Before assessing this argument let us see why 2-shareability implies the CHSH
inequality. Consider two parties, denoted by 1 and 2. Assume that all possible corre-
lations between parties 1 and 2 are 2-shareable to two other parties, denoted 1′ and 2′,
that conceivably exist. Each party has a single system and subjects it to measurement
of a single observable, which we denote by A,C, B ′, D′, respectively. See Fig. 2. Then
for the four possible outcomes of the measurements we get a(c+d ′)+b′(c−d ′) = ±2
which implies for the expectation values of the product of the local outcomes

|〈AC〉 + 〈AD′〉 + 〈B′C〉 − 〈B′D′〉| ≤ 2. (22)

We now invoke 2-shareability of the correlations to perform the following counter-
factual reasoning. By assumption the correlations between parties 1 and 2 are the same
as between parties 1 and 2′. Therefore, if party 2 would have measured the observable
that party 2′ measured, the observed correlations between the measurements of this
observable by party 2 and the measurement results of party 1 would be the same as
between party 1 and 2′. We can thus set 〈AD′〉 = 〈AD〉. Analogously we can set
〈B ′C〉 = 〈BC〉 and 〈B ′D′〉 = 〈B D〉. Therefore we obtain from 22:

|〈AC〉 + 〈AD〉 + 〈BC〉 − 〈BD〉| ≤ 2, (23)

which is the CHSH inequality from which one can prove Bell’s theorem. Note that
crucial in the argument is that the 2-shareability justifies the counterfactual reasoning.

Although the above argument indeed shows that 2-shareability of correlations al-
ready implies a conflict with quantum mechanics, we believe Schumacher’s dismissal
of issues of locality or local realism in interpreting Bell’s theorem to be rather artificial
and wanting.

First of all, there is the elementary logical point that, given the violation of the
Bell inequality, anything which would imply that it should hold, is false. Thus, despite
Schumacher’s argument, it is indeed still the case that quantum mechanics is non-local
in the sense that some quantum correlations cannot be given a factorisable form in
terms of local correlations, as in (7).

Schumacher was however trying to argue for what physical message one should
take home from Bell’s theorem. Thus although logically Bell’s theorem has to do
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with issues of locality –as was just pointed out–, Schumacher believes the physical
message is to be sought elsewhere since he has an alternative (alledgedly) weaker set
of assumptions than local realism that imply the CHSH inequality. We agree that the
weaker the set of assumptions that lead to the Bell-inequality, the more physically
relevant the argument becomes.16

But we question –and here is our second point of critique against Schumacher’s
dismissal of issues of locality in interpreting Bell’s theorem– whether Schumacher’s
derivation is indeed logically weaker than standard derivations of Bell’s theorem. For
all that is needed to get Bell’s theorem is the CHSH inequality, and in order to get this
from the requirements of the doctrine of local realism we only need to assume that
local realism holds just for measurement of four different observables: two for party
1 (e.g., A, A′) and two for party 2 (e.g., B, B ′). Only with respect to these two parties
and these four observables we need to assume the correlations to be of the local form
(7). It is thus not necessary to assume full blown local realism for an unlimited number
of observables and parties.

In conclusion, for the purposes of obtaining the CHSH inequality the assumption
of 2-shareability suffices, and so does assuming local realism for measurement of only
four observables (two sets of two). We see no physical reason to believe that the first
assumption is weaker than the second. One might object to this reasoning by stating
that it is unnatural to require local realism only for measurements between four dif-
ferent observables. For, after all, we can always think of some extra observables that
can be measured over and above the four already specified. But this objection loses its
force once one realises that requiring 2-shareability instead of ∞-shareability appears
to be just as unnatural as requiring local realism for only four observables and two
parties instead of for an unlimited number of observables and parties. For, after all,
we can always think of some extra party over and above the two already considered.
Furthermore, we believe it to be telling that in the limit of an unlimited number of
parties ∞-shareability and locality are equivalent properties,17 cf. Sect. 3.2.

4 Monogamy of non-local quantum correlations vs. monogamy of entanglement

Two types of monogamy and shareability have been discussed: of entanglement and
of correlations (in Sects. 2, 3, respectively). These are different in principle, although
sometimes they go hand in hand. Monogamy (shareability) of entanglement is a prop-
erty of a quantum state, whereas monogamy (shareability) of correlations is not solely
determined by the state of the system under consideration, but it is also dependent on
the specific setup used to determine the correlations. That is, in the later case it is cru-
cial to also know the number of observables per party and the number of outcomes per
observable. It is thus possible that a quantum state can give non-local correlations that
are monogamous when obtained in one setup, but which are shareable when obtained

16 For given the fact that the Bell inequality is violated, we can exclude more and more possible descriptions
of nature from using derivations of the Bell inequality that use weaker and weaker assumptions. i.e., more
and more possible candidate-theories are then rejected.
17 Note that locality here means that the correlation is of the form (7), without further qualification of the
number of parties or the number of possible measurements per party.
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in another setup. An example of this will be given below. This example also shows
that shareability of non-local quantum correlations and shareability of entanglement
are related in a non-trivial way.

Masanes et al. [10] already remarked (and as was discussed above) that, if we
consider an unlimited number of parties, locality and ∞-shareability of bi-partite cor-
relations are identical properties. This is analogous to the fact (also discussed above
and also obtained by [10]) that quantum separability and ∞-shareability of a quantum
state are identical in the case of an unlimited number of parties. But if we consider
shareability with respect to only one other party the analogy between locality, sep-
arability and shareability breaks down. Instead we will show the following result:
Shareability of non-local quantum correlations implies shareability of entanglement
of mixed states (that gives rise to the non-locality), but not vice versa. The proof for
the positive implication runs as follows. Because by assumption the correlations are
shareable they are identical for parties a and b and a and c. The quantum states ρab and
ρac for the joint systems ab and ac that are supposed to give rise to these correlations
must therefore also be identical, i.e., they are thus shareable. Furthermore, because the
correlations are non-local, these quantum states must be entangled. They furthermore
must be non-pure, i.e., mixed, because entanglement of pure states can not be shared.
This concludes the proof. Below we give an example of this and show that the converse
implication does not hold. In order to do so we will first discuss methods that allow
one to reveal the shareability of non-local correlations.

In general a bi-partite quantum state can be investigated using different setups that
each have a different number of observables per party and outcomes per observable.
In each such a setup the monogamy and shareability of the correlations that are obtain-
able via measurements on the state can be investigated. This is generally performed
via a Bell-type inequality that distinguishes local from non-local correlations for the
specific setup used.

Let us first assume the case of two parties that each measure two dichotomous
observables. For this case the only relevant local Bell-type inequality is the CHSH
inequality for which we have seen that the Toner-Verstraete trade-off (13) implies that
all quantum non-local correlations must be monogamous: it is not possible to have
correlations between party a and b of subsystem ab and between a and c of subsystem
ac such that both |〈Bab〉qm| and |〈Bac〉qm| violate the local bound.

It is tempting to think that those entangled states that show monogamy of non-local
quantum correlations will also show monogamy of entanglement. This, however, is
not the case. For example, three-party pure entangled states exist whose reduced bi-
partite states are identical, entangled and able to violate the CHSH inequality (e.g.,
the W -state |ψ〉 = (| 001〉 + | 010〉 + | 100〉)/√3 has such reduced bi-partite states).
These reduced bi-partite states are mixed and their entanglement is shareable, yet,
as shown above, they show monogamy of the non-local correlations obtainable from
these states in a setup that has two dichotomous observables per party. Thus we cannot
infer from the monogamy of non-local correlations that quantum states responsible
for such correlations have monogamy of entanglement; some of them have shareable
mixed state entanglement. Consequently, the study of the non-locality of correlations
in a setup that has two dichotomous observables per party, thereby considering the
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CHSH inequality, does not allow one to reveal shareability of the entanglement of
bi-partite mixed states.

Nevertheless, it is possible to reveal shareability of entanglement of bi-partite mixed
states using a Bell-type inequality. But for that it is necessary that the non-local corre-
lations which are obtained from the state in question are not monogamous, i.e., a setup
must be used in which some non-local quantum correlations turn out to be shareable.
We have just seen that the case of two dichotomous observables per party, and thus the
CHSH inequality, was shown not to suffice. However, adding one observable per party
does suffice. Consider the setup where each of the two parties measures three dicho-
tomic observables, which will be denoted by A, A′, A′′ and B, B ′, B ′′, respectively.
Collins and Gisin [36] have shown that for this setup only one relevant new Bell-
type inequality besides the CHSH inequality can be obtained (modulo permutations
of observables and outcomes). This inequality reads:

〈C 〉local := 〈AB〉 + 〈A′B〉 + 〈A′′B〉 + 〈AB′〉 + 〈A′B′〉 + 〈AB′′〉
−〈A′′B′〉 − 〈A′B′′〉 + 〈A〉 + 〈A′〉 − 〈B〉 − 〈B′〉 ≤ 4, (24)

where for brevity the subscript ‘local’ is omitted in the expectation values in the mid-
dle term. Any local correlation must obey this inequality. Collins and Gisin [36] show
that the fully entangled pure three-qubit state

|φ〉 = µ| 000〉 +
√

(1 − µ2)/2(| 110〉 + | 101〉) (25)

gives for some values of µ bi-partite correlations between party a and b of subsystem
ab and between a and c of subsystem ac such that the inequality (24) is violated
for both these correlations: 〈Cab〉qm = 〈Cac〉qm > 4. This shows that some of the
non-local correlations between party a and b can thus be shared with party a and c.

Since |φ〉 is a pure entangled three-qubit state the two-qubit reduced states ρab and
ρac are mixed. Furthermore, since the state |φ〉 is symmetric with respect to qubit b
and c these reduced states are identical. They must also be entangled because they vio-
late the two-party inequality (24). Therefore, the two-qubit mixed entangled state ρab

is shareable to at least one other qubit. This shows that the inequality (24) is suitable
to reveal shareability of entanglement of mixed states.

It would be interesting to investigate the multi-partite extension of these results.
A preliminary investigation for N = 3 was performed by Seevinck [37]. There the
monogamy of bi-separable three-partite quantum correlations that violate a three-qubit
Bell-type inequality that has two dichotomic measurements per party was investigated.
For the specific Bell-type inequality under study it was found that maximal viola-
tion by bi-separable three-partite quantum correlations is monogamous. This is to be
expected because maximal quantum correlations are obtained from pure state entan-
glement which is monogamous. However, it was found that the correlations that give
non-maximal violations can be shared. This indicates shareability of the non-locality
of bi-separable three-partite quantum correlations.

Monogamy of non-local correlations is not universal. Both the above results by
Collins and Gisin [36] and by Seevinck [37] indicate that non-locality of correlations
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can be shared. However, as we have stated before, Pawłowski and Brukner [29] have
proven a particular multipartite generalisation of the monogamy constraint (12) for a
large class of linear multi-partite Bell-type inequalities. But the monogamy constraints
considered by Pawłowski and Brukner contain as many Bell-type polynomials B,C ,
etc. (or Bell-operators in the quantum case) as there are different settings for the dif-
ferent parties. The monogamy constraint |〈Cab〉| + |〈Cac〉| ≤ 4 used above is indeed
not of this form, since in the Collins-Gisin inequality the parties each choose between
three different settings, not two. The same applies to the Seevinck [37] results.

A closer look at this allows us to phrase a surprising open problem. This problem
reads as follows.18 Consider four parties a, b, c and d. Collins and Gisin [36] have
shown that quantum states for parties a, b, c exist such that

|〈Cab〉qm| + |〈Cac〉qm| > 2L R. (26)

Here L R is the bound on |〈Cab〉local| attainable by local correlations (7). By symmetry

|〈Cab〉qm| + |〈Cad〉qm| > 2L R (27)

is of course also possible for some quantum states between parties a, b, d. However,
Pawłowski and Brukner [29] have derived the monogamy constraint

|〈Cab〉ns| + |〈Cac〉ns| + |〈Cad〉ns| ≤ 3L R (28)

that must be obeyed by all no-signalling correlations between the four parties a, . . . , d.
Note that (28) must also be true for quantum correlations as these are no-signalling.
What is not known is whether both (26) and (27) can hold simultaneously for quantum
or no-signalling correlations between the four parties a, . . . , d given the fact that (28)
must be satisfied by these correlations. It is conjectured19 that this is indeed possible
for no-signalling correlations.

5 Some consequences for cryptography and quantum key distribution

A fruitful application of the monogamy of quantum entanglement is that it provides
a basic framework for quantum key distribution. The reason for this is that entangle-
ment can be seen as the quantum equivalent of what is meant by privacy [1]. The main
resource for privacy is a secret cryptographic key: correlations shared by interested
persons but not known by any other person. Both these two fundamental features of
privacy can be found in entanglement: If systems are in a pure entangled state then at
the same time (i) the systems are correlated and (ii) no other system is correlated with
them, neither quantum mechanically nor classically [11].

18 Where it is understood that the Bell-type polynomials C in Eqs. (26, 27, 28) are written in a particular
way so as to comply with the analysis of Pawłowski and Brukner [29] (i.e., without negative coefficients;
every inequality can be brought to that form).
19 M, Pawłowski, private communication.

123



Monogamy of correlations versus monogamy of entanglement 291

However, this only holds for pure states because we have seen that entanglement
of mixed states can be shared. An example was the W -state |ψ〉 = (| 001〉 + | 010〉 +
| 100〉)/√3. But we have also seen that in a bi-partite setup with two dichotomous
observables per party the non-locality these states can give rise to (i.e., the violation of
the CHSH inequality) is monogamous in any no-signalling theory despite the share-
ability of the entanglement responsible for the non-locality. Quantum key distribution
exploits precisely this fact [2,9,38–40], namely that cryptographic protocols exist
where non-locality cannot be shared (i.e., it is monogamous) according to the laws of
some general class of theories, namely no-signalling theories. The idea exploited is
that a secret key can be generated from correlations that violate the CHSH inequality
by a sufficient amount such that the key is secure against eavesdroppers that are only
bound by the no-signalling principle. Its basic features can be easily shown in Fig. 1.

Firstly, consider the point (2, 2) in this figure. Suppose we force a and b to be
maximally classically correlated, which implies that they are perfectly (anti-) cor-
related (i.e., deterministically) and thus that 〈Bab〉 = 2. Then in any no-signalling
theory (including quantum mechanics) this prevents a and c from violating the CHSH
inequalities: it must be that 〈Bac〉 ≤ 2 (and analogous for parties b and c).

Thus if a and b are perfectly classically correlated, then b and c can share an
arbitrary entangled state that is consistent with a and b being perfectly classically cor-
related, but they will still not be able to violate the CHSH inequality (when b chooses
his observables to be the ones in which he is perfectly classically correlated to a).

Secondly, consider the points (2
√

2, 0) and (4, 0), respectively. This shows that
forcing a and b to be maximally non-local in accordance with respectively, quantum
mechanics or any no-signalling theory forces a and c to have no correlations at all
since 〈Bac〉 = 0 in both cases.

Thirdly, consider the region outside the local square with edge points (±2,±2)
but inside the quantum circle. From this we see that as soon as there are non-local
correlations between, say, a and b the correlations between a and c cannot be classi-
cally maximal, i.e., can not be perfectly (anti-) correlated. Indeed, a corollary of the
quantum monogamy inequality (choosing C ′ = C in 13) gives [6]

〈Bab〉2
qm + 4〈AC〉2

qm ≤ 8. (29)

Thus the stronger ab violate the CHSH inequality, the weaker the correlations of c
with a; and if 〈Bab〉 = 2

√
2 then 〈AC〉 = 0. Note that a similar result holds for the

no-signalling monogamy inequality (12) and the points in the region outside the local
square but inside the no-signalling tilted square.

Based on these monogamy properties of non-local correlations as well as on the
no-signalling assumption it has been shown recently that quantum key distribution
can be secure according to the strongest notion, the so-called universally-composable
security [9,40]. However, it is noteworthy that Pawłowski [41] recently gave a secu-
rity proof for quantum key distribution protocols based only on the monogamy of
non-local correlations, which is a strictly weaker assumption than the assumption of
no-signalling.

It is important to realise, and we have not seen this stressed anywhere before,
that the possibility of non-locality as a resource for secure key distribution depends
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crucially on the experimental setup (i.e., the number of observables and outcomes)
as well as the Bell-type inequality that is being considered. In the previous section
we have indeed seen that non-locality is not universally monogamous. Examples have
been given of non-locality that is shareable and which can thus not be used as a resource
for secure key distribution.20 Nevertheless, it remains remarkable that situations exists
where monogamous correlations can be obtained, not just in quantum mechanics but
in any no-signalling theory whatsoever.

6 Discussion

It has been shown that a fruitful way of studying physical theories is via the ques-
tion whether the physical states and different kinds of correlations that are possible
in each theory can be shared to different parties. Here one focuses on subsets of the
parties and whether their states or correlations can be extended to parties not in the
original subsets. We have shown that unrestricted general correlations can be shared to
any number of parties (called ∞-shareable). In the case of no-signalling correlations
it was already known that such correlations can be ∞-shareable iff the correlations
are local. We have shown that this implies that partially-local correlations are also
∞-shareable, since they are combinations of local and unrestricted correlations be-
tween subsets of the parties. However, it was reviewed that both quantum and no-sig-
nalling correlations that are non-local are not ∞-shareable and monogamy constraints
for such correlations have also been reviewed.

We have investigated the relationship between sharing non-local quantum corre-
lations and sharing mixed entangled states, and already for the simplest bi-partite
correlations this was shown to be non-trivial. The Collins-Gisin Bell-type inequality
[36] indicates that non-local quantum correlations can be shared and this also indi-
cates sharing of entanglement of mixed states. The CHSH inequality was shown not
to indicate this. This shows that non-local bi-partite correlations in a setup with two-
dichotomous observables per party cannot be shared, whereas this is possible in a
setup with one observable per party more. On the quantitative side, we have given a
simpler proof of the Toner-Verstraete [5] monogamy relation (13) as well as a strength-
ening thereof. Further, a recently proposed new interpretation of Bell’s theorem by
Schumacher [13] in terms of shareability of correlations has been critically assessed.
Although it is indeed a viable alternative interpretation, we have argued that, con-
trary to Schumacher’s own verdict, it is not weaker, and neither is it more natural
than the standard interpretation in terms of the doctrine of local realism. Finally, we
have reviewed the fact that the monogamy of correlations can be exploited to pro-
vide protocols for secure quantum key distribution, and we have indicated that some
non-local correlations indeed suffice for this task, but that in general not all non-local
correlations are monogamous and that this fact should be critically taken into account.

20 The statement bu Toner, p 60 in [6] that “a and b cannot violate a Bell inequality even if they share
entangled states, if b has to be perfectly correlated to another party c” must thus be qualified. It holds only
for the specific Bell inequalities considered by Toner, which, in fact, are the CHSH inequalities.
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We would like to end by pointing out some open problems and possible avenues for
future research. First of all, the relationship between shareability of quantum states
and that of non-local quantum correlations asks to be further investigated, thereby
extending the analysis of Sect. 4. Further, it would be interesting to generalise the
monogamy inequality (13) for quantum correlations from three to N parties. Also,
solving the open problem that was given at the end of Sect. 4 might reveal fruitful
new insight. Lastly, Pawłowski’s investigation and preliminary results [41] to base
quantum cryptography on the monogamy of correlations only, seems very promising
and deserves to be further studied. For this purpose it is desirable to be able to indicate
precisely under what conditions non-locality is monogamous, and in precisely what
way.
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