Skip to main content
Log in

Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a scheme for asymmetric multi-party quantum state sharing of an arbitrary m-qubit state with n agents. The sender Alice first shares m − 1 Bell states and one n + 1-particle Greenberger–Horne–Zeilinger state with n agents, where the agent Bob, who is designated to recover the original m-qubit state, just keeps m particles and other agents (all controllers) n − 1 particles, that is, each controller only holds one particle in hand. Subsequently, Alice performs m Bell-basis measurements on her 2m particles and each controller only need take a single-particle measurement on his particle with the basis X. Finally, Bob can recover the original m-qubit state with the corresponding local unitary operations according to Alice and all controllers’ measurement results. Its intrinsic efficiency for qubits approaches 100%, and the total efficiency really approaches the maximal value, which is higher than those of the known symmetric schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS National Computer Conference, vol. 48, pp. 313–317. AFIPS Press, Montvale (1979)

  2. Shamir A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  CAS  MathSciNet  ADS  Google Scholar 

  4. Cleve R., Gottesman D., Lo H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    Article  CAS  ADS  Google Scholar 

  5. Gottesman D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311-1–042311-8 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  6. Hideki I., Jörn M.Q., et al.: A Quantum information theoretical model for quantum secret sharing schemes. arXiv:quant-ph /0311136v1 (2003)

  7. Sudhir K.S., Srikanth R.: Generalized quantum secret sharing. Phys. Rev. A 71(1), 012328-1–012328-6 (2005)

    ADS  Google Scholar 

  8. Qin S.J., Gao F., Wen Q.Y., Zhu F. C.: Cryptanalysis of the Hillery–Buzek–Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76(6), 062324-1–062324-7 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Tittel W., Zbinden H., Gisin N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301-1–042301-6 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Lance A.M., Symul T., Bowen W.P., Sanders B.C., Lam P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903-1–177903-4 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Bandyopadhyay S.: Teleportation and secret sharing with pure entangled states. Phys. Rev. A 62((1), 012308-1–012308-7 (2000)

    MathSciNet  ADS  Google Scholar 

  12. Hsu L.Y.: Quantum secret-sharing protocol based on Grover’s algorithm. Phys. Rev. A 68(2), 022306-1–022306-4 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Li Y.M., Zhang K.S., Peng K.C.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420–424 (2004)

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  14. Deng F.G., Li C.H., Li Y.S. et al.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338-1–022338-8 (2005)

    Article  MathSciNet  ADS  CAS  Google Scholar 

  15. Deng F.G., Li X.H., Li C.Y. et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72(4), 044301-1–044301-4 (2005)

    ADS  Google Scholar 

  16. Li X.H., Zhou P., Li C.Y. et al.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B. At. Mol. Opt. Phys. 39(8), 1975–1983 (2006)

    Article  CAS  ADS  Google Scholar 

  17. Deng F.G., Li X.H., Li C.Y. et al.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39(3), 459–464 (2006)

    Article  CAS  ADS  Google Scholar 

  18. Man Z.X., Xia Y.J., An N.B.: Quantum state sharing of an arbitrary multiqubit sate using nonmaximally entangled GHZ states. Eur. Phys. J. D 42(2), 333–340 (2007)

    Article  CAS  MathSciNet  ADS  Google Scholar 

  19. Muralidharan S., Panigrahi P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333-1–062333-5 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Liu J., Liu Y.M., Zhang Z.J.: Generalized multiparty quantum single-qutrit-state sharing. Int. J. Theor. Phys. 47(9), 2353–2362 (2008)

    Article  MATH  Google Scholar 

  21. Yuan H., Liu Y.M., Han L.F., Zhang Z.J.: Tripartite arbitrary two-qutrit quantum state sharing. Commun. Theor. Phys. 49(5), 1191–1194 (2008)

    Article  ADS  Google Scholar 

  22. Wang T.J., Zhou H.Y., Deng F.G.: Quantum state sharing of an arbitrary m-qudit state with two-qubit entanglements and generalized Bell-state measurements. Physica A 387(18), 4716–4722 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  23. Sheng Y.B., Deng F.G., Zhou H.Y.: Efficient and economic five-party quantum state sharing of an arbitrary m-qubit state. Eur. Phys. J. D 48(2), 279–284 (2008)

    Article  CAS  ADS  Google Scholar 

  24. Cabello A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)

    Article  CAS  ADS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-hua Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Rh., Huang, Ls., Yang, W. et al. Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf Process 10, 53–61 (2011). https://doi.org/10.1007/s11128-010-0176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0176-z

Keywords

Navigation