Skip to main content
Log in

Volume thresholds for quantum fault tolerance

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We introduce finite-level concatenation threshold regions for quantum fault tolerance. These volume thresholds are regions in an error probability manifold that allow for the implemented system dynamics to satisfy a prescribed implementation inaccuracy bound at a given level of quantum error correction concatenation. Satisfying this condition constitutes our fundamental definition of fault tolerance. The prescribed bound provides a halting condition identifying the attainment of fault tolerance that allows for the determination of the optimum choice of quantum error correction code(s) and number of concatenation levels. Our method is constructed to apply to finite levels of concatenation, does not require that error proabilities consistently decrease from one concatenation level to the next, and allows for analysis, without approximations, of physical systems characterized by non-equiprobable distributions of qubit error probabilities. We demonstrate the utility of this method via a general error model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shor, P.W.: Proceedings of the 37th Annual Symposium on Foundation of Computer Science, 56. IEEE Press, Los Alamitos, CA (1996)

  2. Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Calderbank A.R., Shor P.W.: Phys. Rev. A 54, 1098 (1996)

    Article  CAS  ADS  PubMed  Google Scholar 

  4. Calderbank A.R., Rains E.M., Shor P.M., Sloane N.J.A.: IEEE Trans. Inf. Th. 44, 1369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Phys. Rev. Lett. 78, 405 (1997)

    Article  CAS  MathSciNet  ADS  MATH  Google Scholar 

  6. Knill, E., Laflamme, R.: arXiv:quant-ph/9608012, (1996)

  7. Aharonov, D., Ben-Or, M.: Proc. 29th Ann. ACM Symp. on Th. Comp., 176 (1997)

  8. Kitaev A.Y.: Russ. Math. Surv. 52, 1191 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Knill, E., Laflamme, R., Zurek, W.H.: Proceedings of the Royal Society of London A, 365 (1998)

  10. Aliferis P., Gottesman D., Preskill J.: Quant. Inf. Comp. 6, 97 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Rahn B., Doherty A.C., Mabuchi H.: Phys. Rev. A 66, 032304 (2002)

    Article  ADS  Google Scholar 

  12. Svore K.M., Cross A.W., Chuang I.L., Aho A.V.: Quant. Inf. Comp. 6, 193 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Stephens A.M., Fowler A.G., Hollenberg L.C.L.: Quant. Inf. Comp. 8, 330 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Cross A.W., DiVincenzo D.P., Terhal B.M.: Quant. Inf. Comp. 9, 541 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Gilbert G., Hamrick M., Weinstein Y.S.: Quant. Inf. Proc. 7, 263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Aliferis P., Preskill J.: Phys. Rev. A 78, 052331 (2008)

    Article  ADS  Google Scholar 

  17. Gilbert, G., Weinstein, Y.S., Aggarwal, V., Calderbank, A.R.: To appear

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Gilbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggarwal, V., Calderbank, A.R., Gilbert, G. et al. Volume thresholds for quantum fault tolerance. Quantum Inf Process 9, 541–549 (2010). https://doi.org/10.1007/s11128-010-0181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0181-2

Keywords

Navigation