Skip to main content
Log in

Tripartite entanglement sudden death in Yang-Baxter systems

  • Review Article
  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we derive unitary Yang-Baxter \({\breve{R}(\theta, \varphi)}\) matrices from the \({8\times8\,\mathbb{M}}\) matrix and the 4 × 4 M matrix by Yang-Baxteration approach, where \({\mathbb{M}/M}\) is the image of the braid group representation. In Yang-Baxter systems, we explore the evolution of tripartite negativity for three qubits Greenberger-Horne-Zeilinger (GHZ)-type states and W-type states and investigate the evolution of the bipartite concurrence for 2 qubits Bell-type states. We show that tripartite entanglement sudden death (ESD) and bipartite ESD all can happen in Yang-Baxter systems and find that ESD all are sensitive to the initial condition. Interestingly, we find that in the Yang-Baxter system, GHZ-type states can have bipartite entanglement and bipartite ESD, and find that in some initial conditions, W-type states have tripartite ESD while they have no bipartite Entanglement. It is worth noting that the meaningful parameter \({\varphi}\) has great influence on bipartite ESD for two qubits Bell-type states in the Yang-Baxter system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Haroche S., Raimond J.-M.: Exploring the Quantum: Atoms, Cavities, and Photons. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  2. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Stenholm S., Suominen K.-A.: Quantum Approach to Informatics. Wiley, Hoboken (2005)

    Book  MATH  Google Scholar 

  4. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys 81, 865 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Acin A., Bruss D., Lewenstein M., Sanpera A.: Classification of mixed three-qubit states. Phys. Rev. Lett 87, 040401 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  6. Gühne O. et al.: Experimental detection of entanglement via witness operators and local measurements. J. Mod. Opt 50, 1079 (2003)

    Article  ADS  MATH  Google Scholar 

  7. Hayashi M., Markham D., Murao M., Owari M., Virmani S.: Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. Phys. Rev. Lett 96, 040501 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  8. Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  9. Zhang C.-W., Li C.-F., Wang Z.-Y., Guo G.-C.: Probabilistic quantum cloning via Greenberger-Horne-Zeilinger states. Phys. Rev. A 62, 042302 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  10. Reis P., Shelly Sharma S.: Generation of field mediated three qubit entangled state shared by Alice and Bob. Phys. Rev. A 79, 012326 (2009)

    Article  ADS  Google Scholar 

  11. Roos C.F. et al.: Control and measurement of three-qubit entangled states. Science 304, 1478 (2004)

    Article  ADS  Google Scholar 

  12. Röthlisberger B., Lehmann J., Saraga D.S., Traber P., Loss D.: Highly entangled ground states in tripartite qubit systems. Phys. Rev. Lett 100, 100502 (2008)

    Article  Google Scholar 

  13. Yu T., Eberly J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett 93, 140404 (2004)

    Article  ADS  Google Scholar 

  14. Roszak K., Machnikowski P.: Complete disentanglement by partial pure dephasing. Phys. Rev. A 73, 022313 (2006)

    Article  ADS  Google Scholar 

  15. Ficek Z., Tanas R.: Dark periods and revivals of entanglement in a two-qubit system. Phys. Rev. A 74, 024304 (2006)

    Article  ADS  Google Scholar 

  16. Liu R.F., Chen C.C.: Role of the Bell singlet state in the suppression of disentanglement. Phys. Rev. A 74, 024102 (2006)

    Article  ADS  Google Scholar 

  17. Yu T., Eberly J.H.: Qubit disentanglement and decoherence via dephasing. Phys. Rev. B 68, 165322 (2003)

    Article  ADS  Google Scholar 

  18. Yu T.: Entanglement Decay versus energy change: a model. Phys. Lett. A 361, 287 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Sainz I., Bjork G.: Entanglement invariant for the double Jaynes-Cummings model. Phys. Rev. A 76, 042313 (2007)

    Article  ADS  Google Scholar 

  20. Aolita L., Chaves R., Cavalcanti D., Acin A., Davidovich L.: Scaling laws for the decay of multiqubit entanglement. Phys. Rev. Lett 100, 080501 (2008)

    Article  ADS  Google Scholar 

  21. Lopez C.E., Romero G., Lastra F., Solano E., Retamal J.C.: Sudden birth versus sudden death of entanglement in multipartite systems. Phys. Rev. Lett 101, 080503 (2008)

    Article  ADS  Google Scholar 

  22. Yonac M., Yu T., Eberly J.H.: Sudden death of entanglement of two Jaynes-Cummings atoms. J. Phys. B 39, S621 (2006)

    Article  ADS  Google Scholar 

  23. Yonac M., Yu T., Eberly J.H.: Pairwise concurrence dynamics: a four-qubitmodel. J. Phys.B 40, S45 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  24. Yang C.N.: Some exact results for the many-body problem in one dimension with repulsive -function interaction. Phys. Rev. Lett 19, 1312–1315 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Yang C.N.: S matrix for the one-dimensional N-body problem with repulsive or attractive -function interaction. Phys. Rev 168, 1920 (1968)

    Article  ADS  Google Scholar 

  26. Baxter R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  27. Baxter R.J.: Partition funtion of the eighy-vertex lattice model. Ann. Phys 70, 193–228 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Drinfeld V.G.: Hopf algebras and the quantum Yang-Baxter equation. Soviet Math. Dokl 32, 254–258 (1985)

    Google Scholar 

  29. Kitaev A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys 303, 2 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Kauffman L.H., Lomonaco S.J Jr: Braiding operators are universal quantum gates. New J. Phys 6, 134 (2004)

    Article  ADS  Google Scholar 

  31. Franko J.M., Rowell E.C., Wang Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theory Ramif 15, 413 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang Y., Kauffman L.H., Ge M.L.: Universal quantum gate, Yang-Baxterization and Hamiltonian. Int. J. Quant. Inf 3, 669 (2005)

    Article  MATH  Google Scholar 

  33. Zhang Y., Ge M.L.: GHZ states, almost-complex structure and Yang-Baxter equation. Quant. Inf. Proc 6, 363 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, Y., Rowell, E.C., Wu, Y.S., Wang, Z.H., Ge,M.L.: From extraspecial twogroups to GHZ states. E-print quant-ph/0706.1761 (2007)

  35. Chen J.L., Xue K., Ge M.L.: Braiding transformation, entanglement swapping, and Berry phase in entanglement space. Phys. Rev. A 76, 042324 (2007)

    Article  ADS  Google Scholar 

  36. Chen J.L., Xue K., Ge M.L.: Berry phase and quantum criticality in Yang-Baxter systems. Ann. Phys 323, 2614 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Chen, J.L., Xue, K., Ge, M.L.: All pure two-qudit entangled states can be generated via a universal Yang-Baxter matrix assisted by local unitary transformation. E-print quant-ph/0809.2321 (2008)

  38. Brylinski J.L., Brylinski R.: Universal quantum gates. In: Brylinski, R., Chen, G. (eds) Mathematics of Quantum Computation, Chapman Hall/CRC Press, Boca Raton (2002)

    Google Scholar 

  39. Wang G., Xue K., Wu C., Liang H., oh C.H.: Entanglement and Berry phase in a new Yang-Baxter system. J. Phys. A Math. Theor 42, 125207 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  40. Hu S.-W., Xue K., Ge M.-L.: Optical somulation of the Yang-Baxter equation. Phys. Rev. A 78, 022319 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  41. Hu T.T., Wu C.F., Xue K.: Berry phase and entanglement of three qubits in a new Yang-Baxter system. J. Math. Phys 50, 083509 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  42. Hu T.T., Wu C.F., Xue K.: The sudden death of entanglement in constructed Yang-Baxter systems. Quant. Inf. Proc 9, 27–35 (2010)

    Article  MATH  Google Scholar 

  43. http://pos.sissa.it/archive/conferences/038/004/Solvay004.pdf

  44. Wootters W.K.: Entanglement of formation of an arbitary state of two qubits. Phys. Rev. Lett 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  45. Sabin C., Garcia-Alcaine G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  46. In: Jimbo, M. (ed.) Yang-Baxter Equations in Integrable Systems. World Scientific, Singapore (1990)

  47. Slingerland J.K., Bais F.A.: Quantum groups and non-abelian braiding in quantum hall systems. Nucl. Phys. B 612, 229 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Badurek G., Rauch H., Zeilinger A., Bauspiess W., Bonse U.: Phase-shift and spin-rotation phenomena in neutron interferometry. Phys. Rev. D 14, 1177 (1976)

    Article  ADS  Google Scholar 

  49. Zeilinger A.: Complementarity in neutron interferometry. Phys. B 137, 235 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taotao Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, T., Ren, H. & Xue, K. Tripartite entanglement sudden death in Yang-Baxter systems. Quantum Inf Process 10, 705–715 (2011). https://doi.org/10.1007/s11128-010-0221-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0221-y

Keywords

Navigation