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The conditions under which entanglement becomes maximal are sought in the general one–
dimensional quantum random walk with two walkers. Moreover, a one–dimensional shift operator
for the two walkers is introduced and its performance in generating entanglement is analyzed as a
function of several free parameters, some of them coming from the shift operator itself and some
others from the coin operator. To simplify the investigation an averaged entanglement is defined.
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I. INTRODUCTION

Quantum random walks [1–4] (QRW) are a generaliza-
tion of classical random walks. At each step of the latter
the position of a classical particle (walker) is shifted ac-
cording to the result of tossing a coin. Thus, the position
of the walker is decided by following a probability dis-
tribution over classically well–defined positions. In the
QRW case the tossing of the coin is substituted by the
action of a unitary operator (that shall be called coin op-
erator) on a 2–state system (called coin state) and the
motion of the walker by a unitary transformation of the
position state by a shift operator. The state of the walker
is in general a quantum superposition of several position
eigenstates.

Many aspects of such systems have been studied in the
past [5–8]. In [9] the consequences of making one walker
move in more than one dimension are analyzed. The in-
terplay between decoherence and entanglement has been
unveiled in [10] while in [11] two coins have been used.
The so–called meeting problem has been studied in [12]
for two walkers. We end this short review of recent results
by recalling Ref. [13] where the evolution of the chirality
of the coin has been investigated.

QRW also attract interest in some specific research
topics. For example, the efficiency of the energy transfer
in photosynthesis can be raised at the level of about 99%
if it is modelled by a QRW interacting with the thermal
fluctuations of the environment [14]. Besides, quantum
transport properties of electron systems and dielectric
breakdown driven by strong electric fields can also be
studied by utilizing QRW [15]. In ancilla–based quan-
tum computation schemes [16] the ancilla plays the rôle
of the coin and the measurement produces entanglement
between the qubits. Moreover, experimental set–ups for
QRW are nowadays available [17–19].

In the present paper we propose a quantum walk made
of one spin 1

2 state (the coin) coupled to two particles (the
walkers) whose positions can take any integer value on an
infinite line. QRW with two walkers are a valid tool for
obtaining highly entangled states [20,21]. Indeed, per-
forming measurements on the 2–state coin system after n

random walk steps may yield position states with strong
entanglement among the two walkers. In particular, our
QRW has been modelled in such a way that a further
position measurement on one walker fixes the position of
the other, thus rendering the correlation among the two
walkers a maximum.

The relevance of entanglement in QRW is crucial.
While this property does not appear in classical walks,
it becomes the characterizing ingredient of QRW. The
interest of entanglement lies in the fact that it is of ut-
most relevance for research in quantum computation pro-
tocols and quantum information [22–26] (cryptography,
communication, algorithms, etc.). We want to study the
growth of entanglement among the two walkers and, in
particular, to discover whether maximal entanglement
may be achieved. We also pay attention to the quan-
tum probability P to obtain such entangled states after
the coin measurement.

As a novel ingredient of the present paper, we will in-
troduce a shift operator that to some extent generalizes
the ones so far used in literature. Its form contains sev-
eral free parameters which, added to the parameters of
the coin operator, supply enough freedom to easily find
conditions under which entanglement is maximally en-
hanced.

The plan of the paper is as follows. In section II the
model for QRW is presented in detail. It includes a dis-
cussion about the general type of shift operator. An an-
alytic study of the QRW during the first steps in the
walk is shown in section III. This approach, though ap-
plicable to a very limited number of random walk steps,
turns out to be extremely useful to interpret the numer-
ical results derived in section IV. Indeed, in the latter
section, thanks to a numerical treatment of the random
walk evolution, we study the entanglement at an arbi-
trarily large number of steps. In this section an averaged
entanglement will be defined to simplify the search for
the conditions of maximal entanglement. Some conclu-
sive comments will be given in section V.
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II. THE SPIN–PARTICLE QRW

We begin by stating the precise definition of the model
under study. The two walkers can roam on a line of
discrete spatial positions. The accessible position eigen-
states are |i, i〉 for i ∈ Z (i = 0 is the origin) where the
first item refers to the position of the first walker and the
second one of the second walker. Thus the two walkers
are supposed to stay together during the walk. The coin
state is a spin 1

2 system. Its eigenstates are the spin com-
ponent along the Z–axis. The complete quantum state
is a sum of terms of the form |φ〉 ≡ |s〉 ⊗ |ψ〉 where the
first factor refers to the spin and the second one indicates
the position state. The ⊗ symbol emphasizes the tensor
structure of the state space. The most general pure posi-
tion state contemplated by our model is |ψ〉 = ∑

i ci|i, i〉
with

∑

i |ci|2 = 1. The eigenvectors of the Z–component
of the spin are denoted by an arrow: | ↑〉 (| ↓〉) stands for
the Z–component + 1

2 (− 1
2 ). Its most general pure state

is d↑| ↑〉+ d↓| ↓〉 with |d↑|2 + |d↓|2 = 1. A similar model
was introduced in [20].
The above model is hardly realizable in laboratory

(for a more physical model with two walkers see for ex-
ample [27] and references therein). Rather it must be
viewed as the limiting case where entanglement is ex-
pected to be maximal. Indeed, imagine a more general
QRW model for which the position state of the two walk-
ers after the spin measurement (performed after n QRW
steps) is

∑

i,j cij |i, j〉 (i, j ∈ Z and
∑

i,j |cij |2 = 1) where,

as before, the first (second) item in the ket refers to the
first (second) walker. This state displays large entangle-
ment among the walkers if after a further measurement,
this time on the position state of one of the two walkers,
the position of the other walker gets fixed with maximum
probability. Evidently, the limiting case of the above cir-
cumstance occurs when j is a function of i, j = f(i)
where f is a predetermined known function. As for f
we have chosen the identity function. Moreover, since we
have chosen such an idealized QRW model, the precise
connection among the spin variable and the walkers will
not be better specified. In the rest of the paper we will
study the entropy that entangles the two particles in the
state

∑

i ci|i, i〉 after the coin measurement.
Since we want to study the generation of entanglement,

throughout the paper the factor corresponding to the po-
sition of the walkers in the initial state |φ〉0 of the QRW
shall be free of entanglement,

|φ〉0 = (d↑| ↑〉+ d↓| ↓〉)⊗ |0, 0〉, (1)

where the above normalization condition regarding coef-
ficients d↑, d↓ is assumed and the subscript 0 stands for
initial state (0–th step of the QRW). Furthermore, since
for any spin state |s〉 there exists some axis Z ′ such that
|s〉 = | ↑′〉, the state in (1) can be simplified to (dropping
primes)

|φ〉0 = | ↑〉 ⊗ |0, 0〉, (2)

by adequately choosing the reference axes. Such a simpli-
fication does not entail a loss of generality for the reason
that the position state and the coin state in (1) are un-
correlated.
A single step in the random walk consists in the con-

catenation of two operators, Ushift · Ucoin, iteratively ap-
plied to |φ〉. Operator Ushift acts on position states and
Ucoin on spin states.
Let us begin by introducing the shift operator Ushift.

A quite general form is

Ushift =
∑

n

α
(n)
↑↑ | ↑〉〈↑ |

∑

i

|i + n, i+ n〉〈i, i|

+
∑

n

α
(n)
↑↓ | ↑〉〈↓ |

∑

i

|i + n, i+ n〉〈i, i|

+
∑

n

α
(n)
↓↑ | ↓〉〈↑ |

∑

i

|i + n, i+ n〉〈i, i|

+
∑

n

α
(n)
↓↓ | ↓〉〈↓ |

∑

i

|i + n, i+ n〉〈i, i|, (3)

with α
(n)
ss′ complex coefficients. They must satisfy

several constraints derived from imposing unitarity,

UshiftU
†
shift = I, (I is the unit operator). After some

algebra, the l.h.s. of this condition is
∑

n,m,i

[

| ↓〉〈↑ | |i+ n, i+ n〉〈i+m, i+m|

×
(

α
(n)
↓↑ α

(m)∗
↑↑ + α

(n)
↓↓ α

(m)∗
↑↓

)

+ | ↑〉〈↓ | |i+m, i+m〉〈i+ n, i+ n|
×
(

α
(n)∗
↓↑ α

(m)
↑↑ + α

(n)∗
↓↓ α

(m)
↑↓

)

+ | ↑〉〈↑ | |i+ n, i+ n〉〈i+m, i+m|
×
(

α
(n)
↑↑ α

(m)∗
↑↑ + α

(n)
↑↓ α

(m)∗
↑↓

)

+ | ↓〉〈↓ | |i+ n, i+ n〉〈i+m, i+m|
×
(

α
(n)
↓↓ α

(m)∗
↓↓ + α

(n)
↓↑ α

(m)∗
↓↑

) ]

, (4)

which must equal

I =
(

| ↑〉〈↑ |+ | ↓〉〈↓ |
)

∑

i

|i, i〉〈i, i|. (5)

To fulfil the condition, the first two terms in (4) must
be zero and note also that the second term is the h.c.
of the first one. These considerations suggest to define

the complex 2–vectors V
(n)
1 ≡ (α

(n)
↑↑ , α

(n)
↑↓ ) and V

(n)
2 ≡

(α
(n)
↓↑ , α

(n)
↓↓ ) because in terms of them the above con-

ditions become V
(n)
1 · V (m)∗

2 = 0, V
(n)
1 · V (m)∗

1 = 0,

V
(n)
2 · V (m)∗

2 = 0 for all n 6= m and V
(n)
1 · V (n)∗

2 = 0,

V
(n)
1 ·V (n)∗

1 = V
(n)
2 ·V (n)∗

2 = 1 for all n. Since in complex
2–space there are only two independent orthonormal vec-

tors, there is no much freedom to choose V
(n)
1 and V

(n)
2 .

The most general solution reduces the sum over n and
m to one single term, n = p, m = q for p, q fixed inte-

gers and V
(p)
1 = (α, β), V

(q)
2 = (−β∗, α∗) (for complex
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numbers α, β) and all the other V –vectors equal to zero.
Moreover the two coefficients α, β satisfy |α|2 + |β|2 = 1.
Thus, the shift operator is

Ushift =
(

α| ↑〉〈↑ |+ β| ↑〉〈↓ |
)

∑

i

|i + p, i+ p〉〈i, i|

+
(

α∗| ↓〉〈↓ | − β∗| ↓〉〈↑ |
)

∑

i

|i+ q, i+ q〉〈i, i|, (6)

with p, q ∈ Z fixed and α, β verifying the above normal-
ization.
For p = q no entanglement is generated by the QRW

as every term in Ushift would move the couple of parti-
cles to the same spatial position. Instead, entanglement
appears as far as p 6= q, the specific values of p, q being
immaterial since different pairs p, q are related by rescal-
ings on the line of discrete positions where the walkers
wander. During the present study we will stick to the
values p = +1 and q = −1 all the time.
Without loss of generality, we can take α real in (6).

Indeed, the spin eigenstates | ↑〉, | ↓〉 can be redefined
in such a way to absorb the phase of α. Calling ζ
such a phase, transformations | ↑〉 → eiζ/2| ↑〉 and
| ↓〉 → e−iζ/2| ↓〉 eliminate it from (6). There is no simi-
lar procedure able to withdraw the phase of β too. Thus,
the Ushift operator depends on only two variables: |α|
(henceforth called just α > 0) and arg(β). In literature
the choice α = 1, β = 0 is generally found.
The coin operator Ucoin can be represented by a uni-

tary 2× 2 matrix. The most general such a matrix is an
element of the U(2) group,

Ucoin =

( √
ρ

√
1− ρ ei(θ−η)

−√
1− ρ e−i(θ+η) √

ρ e−2iη

)

eiϕ,

(7)

where 0 ≤ θ, η ≤ π and 0 ≤ ϕ < 2π are arbitrary phases
and 0 ≤ ρ ≤ 1. When ϕ = η (7) becomes an element of
the subgroup SU(2). Actually, the overall phase ϕ plays
no rôle in the following discussion, so in practice we could
limit ourselves to study SU(2) matrices to represent the
most general coin operator.
Particular instances of the unitary matrix Ucoin are the

Hadamard coin (ρ = 1/2, ϕ = 0 and η = θ = π/2),

UH =
1√
2

(

+1 +1
+1 −1

)

, (8)

the Kempe coin [2] (ρ = 1/2, ϕ = η = 0 and θ = π/2),

UK =
1√
2

(

+1 +i
+i +1

)

, (9)

or the Z coin (ρ = 1, η = π/2, ϕ = 0 and θ arbitrary),

UZ =

(

+1 0
0 −1

)

. (10)

At any moment the walk can be stopped and the value
of the spin measured. If the measurement was performed
after each step in the iteration then a classical random
walk would result. Hence, our interest for QRW consists
in relegating the measure after many steps because in this
fashion clear entanglement is displayed. Let us consider
a measurement performed only after n QRW steps giving
spin s and a position pure state, result of the wavefunc-
tion collapse, denoted by |ψ〉sn and equal to

|ψ〉sn ≡
∑

i

ci|i, i〉. (11)

If the spin measurement yields up (down) spin we will
write |ψ〉upn (|ψ〉down

n ). The evident entanglement created
among the two walkers associated with |ψ〉sn shall be cal-
culated by the von Neumann entropy

En ≡ −
∑

i

|ci|2 log2 |ci|2, (12)

where the subscript indicates that the measurement has
been performed after the n–th step. Certainly En ≥ 0
and maximal entanglement is attained when the values
|ci| are all equal. So, if the sum in |ψ〉sn =

∑

i ci|i, i〉
contains N terms, (En)max = log2N . We shall usually
calculate the normalized entanglement defined as

En ≡ En

(En)max
. (13)

This choice of units allows to easily understand when
maximal entanglement has been attained. As the num-
ber N of terms in |ψ〉sn in general depends on the step n,
also the denominator in (13) depends on n. When N = 1
both En and En vanish, the former due to (12) and the
latter by definition.

III. ANALYTIC STUDY OF ENTANGLEMENT

GENERATION

The first few steps of a QRW can be followed analyti-
cally. Starting from state (2), using the coin operator (7)
(where the irrelevant global phase eiϕ has been skipped)
and the shift operator (6) it is easy to see that entangle-
ment can only arise after two steps. Indeed, the walkers
plus coin state after the first step (indicated with a sub-
script 1) is

|φ〉1 = (α
√
ρ− β

√

1− ρ e−i(θ+η))| ↑〉 ⊗ |1, 1〉
−(β∗√ρ + α

√

1− ρ e−i(θ+η))| ↓〉 ⊗ | − 1,−1〉, (14)

and the wavefunctions after the measurement, |ψ〉up1 =
|1, 1〉 and |ψ〉down

1 = | − 1,−1〉, whenever they exist, are
clearly free of entanglement. Let us assume that the spin
measurement after the second step yielded + 1

2 . The re-
sulting entangled position state is

3



|ψ〉up2 ∝
(

α
√
ρ− β

√

1− ρ e−i(θ+η)
)2

|2, 2〉

− e−2iη
∣

∣

∣
α
√

1− ρ+ β
√
ρ e−i(θ+η)

∣

∣

∣

2

|0, 0〉. (15)

The presence of the proportionality symbol reminds the
lack of a normalization constant. We will often write the
wavefunction resulting from the spin measurement in this
way purposely because it renders more transparent the
evaluation of the probability P with which such a state
comes out (P is just the square of the missing normal-
ization). It is easy to verify that maximal entanglement
is achieved when the condition

∣

∣

∣
α
√
ρ− β

√

1− ρ e−i(θ+η)
∣

∣

∣

=
∣

∣

∣
α
√

1− ρ+ β
√
ρ e−i(θ+η)

∣

∣

∣
(16)

holds. If the Hadamard coin were used, the condition
would became |α + β| = |α − β| which is fulfilled when-
ever α is real and β pure imaginary. For the Kempe coin,
condition (16) reduces to |α+ iβ| = |α− iβ| which is sat-
isfied for any α and β as far as both are real. For the Z
coin, condition (16) requires |α| = |β|.
If the result of the measurement after two steps yields

spin − 1
2 , then the position state is

|ψ〉down
2 ∝

(

αβ(1 − ρ)e−2i(θ+η) + |β|2
√

ρ(1− ρ)e−i(θ+η)

−α2
√

ρ(1− ρ)e−i(θ+η) − αβ∗ρ
)

|0, 0〉

+
(

αβ∗(1− ρ)e−2iη + (β∗)2
√

ρ(1− ρ)ei(θ−η)

−α2
√

ρ(1− ρ)e−i(θ+η)e−2iη

−αβ∗ρe−2iη
)

| − 2,−2〉. (17)

To find the circumstances under which entanglement be-
comes a maximum we discuss different values of ρ sep-
arately. When either ρ = 0 or 1 then only one term
survives in each coefficient of (17) and maximal entan-
glement occurs for all θ, η, α and arg(β). For ρ = 1

2
entanglement is a maximum again for all possible values
that the parameters can take. To see this we substitute
ρ = 1

2 in (17) and obtain after some algebra

|ψ〉down
2 ∝ e−i(θ+η)

(

|β|2 − α2 + 2iα|β| sin∆
)

|0, 0〉

+e−2iηe−i arg(β)
(

(2|β|2 − 1) cos∆

−i sin∆
)

| − 2,−2〉, (18)

where ∆ ≡ arg(β)− θ − η. It is easy to verify that both
coefficients have the same modulus.
An instance of maximum entanglement can also be de-

duced for the general case 0 ≤ ρ ≤ 1. First note that
every term in the two coefficients in (17) are equal, apart
from phases. Imposing that the phases are also equal

termwise (except for a possible global phase), we discover
that maximal entanglement occurs when arg(β) = θ+ η.
A generalization of these analytic results to n iterations

of the QRW is too complicated as the length of the coef-
ficients in |ψ〉up,down

n grows exponentially with n. Then,
in the following section we study the above problem nu-
merically with a computer program. The program yields
exact numerical results but without the corresponding
explicit analytical expression.

IV. ENTANGLEMENT AFTER AN ARBITRARY

NUMBER OF STEPS

In this section the entanglement created by measuring
the spin of the coin after an arbitrary number of QRW
steps having started with the initial state (2) shall be
studied. To this end we introduce an averaged entangle-
ment En defined over the first n steps as follows. Consider
n replicas of the QRW and evolve each of them indepen-
dently of the others. In the first replica we measure the
spin and then the entanglement after the first step ob-
taining E1, in the second one after the second step obtain-
ing E2, etc., thus gathering the collection E1, E2, E3, . . .,
En. On the understanding that each measurement yields
the same result (i.e., either all measurement outputs give
up spin or all give down spin), we define

En ≡ 1

n− 1

n
∑

a=2

Ea. (19)

The first step (a = 1) is excluded from the sum in the av-
erage because it generates zero entanglement in any case.
Note that in (19) the subscript n does not mean the step
after which the measurement is done, as in (12), but the
number of steps over which the average is performed.
The convenience of using such an averaged entanglement
becomes obvious when it is 1 because, being the mean of
many positive numbers not larger than 1, such a result for
En necessarily implies that all of them are precisely 1, i.e.
it identifies situations where entanglement is constantly
maximal (therefore the precise value of n used to evalu-
ate En is largely immaterial, as long as it is sufficiently
large). This assertion applies equally well when En = 0,
but clearly this case is physically less interesting.
A computer code was prepared to implement the

above–described procedure for the QRW during a num-
ber n of steps. It calculates step by step the entangle-
ment, either averaged or not, as well as the probability of
having up or down spin after the measurement of the coin
state and also the number of terms N in the collapsed
position wavefunction (the latter enables us to compute
the exact value of (En)max). The numerical procedure
used to extract N was demanding that |ci| in (11) be
larger than a pre–fixed threshold, in our case 10−10. All
the results presented in this section have been obtained
by using this code.
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The next three subsections contain the study for the
three coin operators of section II, namely the Hadamard
UH , the Kempe UK and UZ , respectively. The last sub-
section is dedicated to the general coin case, (expres-
sion (7) with ϕ = 0).

0 0.2 0.4 0.6 0.8 1
α

0

0.2

0.4

0.6

0.8

1

ε200

|ψ>down

|ψ>up

β=+(1-α2
)
1/2

FIG. 1. Averaged entanglement obtained during the first
200 steps of a QRW with the Hadamard coin (8) and shift op-
erator (6) with α, β real. The plots for down (up) spin output
of the measurements are shown with a continuous (dashed)
line. Symbols |ψ〉up,down here and in the next figures refer to
the output of the spin measurement.

A. Hadamard coin

This is the most frequently used coin operator for the
kind of problems at hand. Its expression is given in (8).
To study the entanglement generated by a QRW evolved
with this coin, we first calculate En for n = 200 steps
for real and positive values of α and β = +

√
1− α2

in (6). The result is displayed in Fig. 1 as a function
of α (0 ≤ α ≤ 1).
The plots in Fig. 1 show that as α and β tend to be alike

and real (this means both approach the value 1√
2
) entan-

glement tends to be maximal (minimal) if the measure-
ment yields down (up) spin. The number of entangled
terms N in the collapsed wavefunction after the measure-
ment is equal to the step number n. This must be inter-
preted as that entanglement gets richer and richer as the
QRW goes on. However at the exact values α = β = 1√

2

entanglement suddenly drops to zero for both kinds of
measurement outputs. This is how the vertical line in
Fig. 1 (which applies to the down spin measurement)
must be deciphered. Moreover, the probability of having
such maximally entangled states (for α ≈ β and both
real) after the measurement is extremely small, P ≪ 1.
The origin of all the above facts can be clarified by

using the analytical expressions obtained in section III.
First of all we recall that for any values of α and β the
first step always gives no entanglement at all. For in-
stance, taking α = β = 1√

2
the state after one step of

QRW is |φ〉1 = | ↑〉 ⊗ |1, 1〉. Proceeding with the choice
α = β = 1√

2
, a calculation similar to that exhibited in

section III allows to show that |φ〉2 = | ↑〉⊗ |2, 2〉. By in-
duction this can be immediately generalized to any step,
getting |φ〉n = | ↑〉⊗|n, n〉. Hence, entanglement vanishes
when α = β = 1√

2
.

Now we show why for step n = 2 the entanglement
of the state resulting from a down spin measurement
approaches its maximal value but suddenly drops to
zero at α = β = 1√

2
. Taking α,β in (17) real and

close to each other leads to the expression |ψ〉down
2 ∝

(β2 −α2)(| − 2,−2〉− |0, 0〉) which indeed displays maxi-
mal entanglement although it suddenly becomes zero as
soon as α exactly equals β. This expression also indi-
cates that despite the entanglement of the state resulting
from a down spin measurement converges to the maxi-
mal value, as α tends to β the probability of obtaining
such a measurement output becomes very small, of or-
der O(|β2 −α2|2). It seems reasonable to expect that an
analogous mechanism explains the low probability also
for n > 2.
In Fig. 2 the ratio En (this time non–averaged) for three

different values of α (taking both α and β real and posi-
tive) are shown as a function of n. It is clear that, as α
approaches β, both tending to 1√

2
, the entanglement gets

stuck to the maximum for more and more steps. There-
fore we infer from Fig. 2 that when α = 0.71 the averaged
entanglement after 200 steps is E200 ≈ 1 while after more
steps, say 800, it is patently less than 1, E800 < 1. In-
stead for α = 0.7071, a figure closer to 1√

2
, both E200

and E800 are firmly anchored to 1. Recall that, although
not shown in this graph, we have proved before that at
exactly α = β = 1√

2
the entanglement drops to zero.

The plot for other values of α are qualitatively analogous
to the one shown in the jagged line of Fig. 2 (here and
throughout the rest of the paper, the number 0.37 will
just represent an arbitrary value of α). Thus, a method
to obtain highly entangled states would be using real val-
ues of α and β, very close to each other, and look for a
down spin measurement output in the first QRW steps.
The difficulty is that, as explained above, such down spin
outputs are very unlikely.
Next we add a phase to β while keeping α real. In

this way we will have covered all relevant (real or com-
plex) numerical values for α, β. No dramatic changes in
the entanglement generation are found. In particular, no
cases with arg(β) 6= 0 exist with maximal entanglement,
see Fig. 3 and Fig. 4. When α 6= 1√

2
the dependence on

arg(β) is qualitatively as in Fig. 3. For α = −β = 1√
2

the averaged entanglement goes to zero, as Fig. 4 shows
manifestly, meaning that the true, non–averaged entan-
glement vanishes at all the QRW steps.
The use of the averaged entanglement En after n QRW

steps must not divert our attention away from the fact
that the real interesting quantity is the normalized en-
tanglement En achieved by the quantum state after each
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single measurement. Our computer code allows to dis-
cover isolated cases of maximal entanglement (being iso-
lated, they get lost in the average of En). They occur
mainly in the first few steps of the QRW and are quite
likely since the probability of obtaining the related spin
measurement is not very low.

Let us enumerate all cases of this kind found when us-
ing the Hadamard coin. We start by the position states
originated by measurements that led to down spin: the
entanglement is a maximum at the second step for all α
or β (real or complex) (except for α = β = 1√

2
as we

already know) and at steps n = 3 and 4 when the argu-
ment of β is arg(β) = π/2, 3π/2. If instead the output of
the measurement at n = 2 is up spin, then the entangle-
ment is a maximum for all α real and arg(β) = π/2, 3π/2.
When n = 2 these features can be proved by resorting
to expressions (15) and (17) (but the formalism of sec-
tion III does not suffice to investigate the presence or ab-
sence of maximal entanglement beyond the second QRW
step). Moreover, in all cases the probability for obtaining
the indicated result from the spin measurement is around
P ∼ 0.2 − 0.5 and the number N of entangled terms in
the wavefunction collapsed after the measurement coin-
cides with the QRW step number, N = n except when
n = 3 for which N is 2. There seems to be no other steps
n with En equal to 1. We have checked this assertion up
to n as large as 1000.

B. Kempe coin

When using the Kempe coin (9), the average entan-
glement En turns out to be independent of α,β as far as
both coefficients are real and positive (but depends on n
and on the result, up or down spin, of the measurement).
However, the dependence on the argument of a complex
β displays the rich structure shown in Fig. 5. The first
aspect of this graph to highlight is that, once fixed the
result of the spin measurement, the averaged entangle-
ments at real and positive α,β (the rightmost or leftmost
edges in the figure) are indeed the same for the two values
of α that have been utilized. The second aspect is that
for down spin measurements and α = |β| = 1√

2
there is

maximal entanglement as arg(β) tends to become 3π/2
but at this precise value, it suddenly drops to zero (indi-
cated by the vertical line at this value of arg(β)), a phe-
nomenon similar to the one described for the Hadamard
coin in Fig. 1. In fact, at α = 1√

2
and β = − i√

2
the

wavefunction after n steps is |φ〉n = | ↑〉 ⊗ |n, n〉. As
also happened for real values α ≈ β in the Hadamard
coin, the probability of having this output after the spin
measurement is negligibly small for arg(β) ≈ 3π/2.

0 200 400 600 800
n

0

0.2

0.4

0.6

0.8

1

ε
n

α=0.7071~~2
-1/2

α=0.71
α=0.37

β=+(1-α2
)
1/2

FIG. 2. Entanglement obtained in the first 800 QRW steps
after a down spin measurement with the Hadamard opera-
tor and α, β real. The continuous line shows the result for a
value of α very close to 1

√

2
= 0.7071067812 · · ·. The dashed

line corresponds to a value of α not so close to 1
√

2
and the

lower continuous (jagged) line to a value decidedly different
from 1

√

2
.
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FIG. 3. Averaged entanglement E200 as a function of the
phase of parameter β for a value of α far from 1

√

2
with the

Hadamard coin.
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FIG. 4. Averaged entanglement E200 as a function of the
phase of parameter β for α = 1

√

2
with the Hadamard coin.

The behavior near arg(β) = π/2 can be described as
follows: the averaged entanglement becomes E200 = 0.5
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for α = |β| = 1√
2
and arg(β) close to π/2 while it drops

to zero when the phase attains this precise value. This
pattern can be spelled out by studying the non–averaged
entanglement: for α ≈ |β| ≈ 1√

2
and arg(β) = π/2 it

is maximal for even QRW steps and a down spin mea-
surement while is zero for odd steps. Instead, for up
spin output, the order is reverted: for even steps is
zero and for odd steps is maximal. This explains the
value 0.5 that E200 attains for both spin measurements
near arg(β) = π/2 in Fig.5 (in other places where E200

equals 0.5 the above–described alternance between even
and odd steps is not seen). Unfortunately the probabil-
ity of having such measurement outputs (down spin for
even steps or up spin for odd steps) is negligibly small,
P ≪ 1. Furthermore, in all these cases the number of
terms in the collapsed wavefunction is just N = 2 for
any step n denoting a rather poor entanglement. When
exactly α = |β| = 1√

2
and arg(β) = π/2, the entan-

glement vanishes at all steps for any measurement out-
put (actually, the wavefunction after n QRW steps is
|φ〉n = | ↓〉 ⊗ | − n,−n〉). This accounts for the zero of
E200 in Fig. 5 at strictly arg(β) = π/2 and α = |β| = 1√

2
.

Again we study the non–averaged entanglement during
the initial steps fo the QRW. If the measurement output
is down spin then entanglement is maximal at the steps
n = 2, 3, 4 of the QRW for all α,β real and at the step
n = 2 for α real and any complex β (the cases for n = 2
follow also from (17)). When instead the measurement
gives up spin, the QRW produces a state with maximal
entanglement only at the second step for all α and β real
(it matches with the discussion after expression (16)).
All the above events with maximal entanglement have
a significant probability to occur, P ∼ 0.2 − 0.5 and
the number of terms N in the collapsed position wave-
function coincides with the QRW step n except for n = 3,
down spin and α,β real, for which N is 2. Up to n = 1000
we have found no other maximum non–averaged entan-
glement results for any coin measurement output.

C. Z coin

In Fig. 6 we show the averaged entanglement obtained
with the use of the Z coin (10) as a function of α for real
β. From this plot it is apparent that there are no val-
ues of these parameters that allow to have maximal or
almost maximal entanglement during the entire QRW.
Moreover, having fixed the (real) values of α and |β|, the
plot of E200 as a function of arg(β) (not shown) comes
out flat, indicating no dependence on this phase. There-
fore we conclude that the averaged entanglement never
attains the maximum when the Z coin operator is used,
implying that there are no values of α,β that allow max-
imal entanglement for all (or almost all) n > 2.

0 1 2 3 4 5 6
arg(β)/radians

0

0.2

0.4

0.6

0.8

1

ε200

3π/2π/2

FIG. 5. Averaged entanglement E200 as a function of the
phase of parameter β for various values of α with the Kempe
coin. The thick continuous line refers to down spin measure-
ment output with α = |β| = 1

√

2
; the thick dashed line to up

spin and α = |β| = 1
√

2
; the thin continuous line to down spin

with α = 0.37 and |β| = +
√
1− α2; and the thin dashed line

to up spin with α = 0.37 and |β| = +
√
1− α2.

0 0.2 0.4 0.6 0.8 1
α

0

0.2
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0.8

1
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)
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FIG. 6. Averaged entanglement E200 as a function of α for
real α,β with the Z coin.

Maximal entanglement can be achieved only in spe-
cific cases. A detailed analysis performed with the non–
averaged entanglement enables us to discover that in-
deed this event happens for all real α and all complex
β when the measurement output yields down spin at
the step n = 2 of the QRW. The number of entan-
gled terms in the collapsed wavefunction |ψ〉down

2 after
the spin measurement is N = 2 and the probability is
P ∼ 0.2 − 0.5, again definitely far from zero. Further-
more, for α = |β| = 1√

2
and arbitrary arg(β) maximal

entanglement appears for n = 2, 3, 4 steps and with a
similarly high probability. In this case, though, the num-
ber N of entangled terms in the resulting wavefunction
after the spin measurement is equal to the step n only
for n = 2, 4 while for n = 3, N is 2. On the other hand,
if the measurement output is up spin, then the entan-
glement will become maximal only when α = |β| = 1√

2

and arbitrary arg(β) at the second step with P = 0.5
and N = 2 entangled terms. As α and |β| tend to
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be equal, the entanglement grows and the probability
approaches 0.5. All these results for n = 2 can be
easily recovered by using the formalism of section III.
In particular, we have |ψ〉up2 ∝ α2|2, 2〉 + |β|2|0, 0〉 and
|ψ〉down

2 ∝ α∗β∗| − 2,−2〉 − αβ∗|0, 0〉.

D. The general coin

We have also run a battery of QRW with the general
coin operator (expression (7) with ϕ = 0) in order to
look for precise combinations of the parameters in Ucoin

allowing maximal entanglement. The initial state was
still given by (2).
Two kinds of runs were done. In the first one the aver-

aged entanglement was calculated after 200 QRW steps
for various values of ρ, θ, η (in Ucoin) and α, arg(β) (in
Ushift). The ranges being 0 ≤ ρ, α ≤ 1, 0 ≤ θ, η ≤ π and
0 ≤ arg(β) < 2π, data were taken by varying the values
of each parameter by jumps of 0.05. The goal was to
find QRW presenting maximal entanglement during all
the steps.
The second kind of run was designed to find isolated

cases of maximal entanglement during the first few steps
of the QRW. For this reason the QRW were evolved only
for 10 steps and the non–averaged normalized entangle-
ment was extracted. The same five parameters as before
were swept within their ranges.
No highly probable parameter regions producing maxi-

mal or near maximal averaged entanglement (E200 > 0.99
and P > 0.15) were found. Instead our computer runs
were plenty of isolated cases with maximal entanglement
at steps n = 2, 3, 4 of the QRW, (En = 1 and P > 0.15).
There were so many of them that giving a complete
record lies beyond the limits of this short paper. Most
of those at step n = 2 are summarized in the general
discussion for arbitrary ρ after (17).

V. CONCLUSIONS

A quantum random walk (QRW) model with two walk-
ers has been devised to study the generation of maximum
entanglement among the two walkers by the process of
coin measurement. The model is rather unphysical but it
has been formulated in the way it is in order to maximize
the entanglement among walkers.
The allowed positions of the walkers are the set of (pos-

itive, negative or null) integers along an infinite line. The
2–state coin is represented by a spin 1

2 system. Every
QRW was started with the state | ↑〉 ⊗ |0, 0〉, that is, the
spin in the (Z–component) up eigenstate and the walk-
ers at the origin of the line. The only consideration used
to select this choice of the initial state was starting the
walk with a position state free of entanglement. With
this premise, and by a redefinition of the origin, any ini-
tial position eigenstate is as valid as any other. The spin

state is also completely general because by an adequate
definition of the axes orientation any spin state can be
viewed as the up spin eigenstate along the Z–axis.

We have introduced a shift operator in the QRW with
two walkers. It includes two free parameters that, to-
gether with those present in the coin operator, provides
enough freedom with which a measurement performed
on the coin state may yield maximal entanglement on
the resulting position quantum state. We have studied
the problem both analytically along the first steps of the
QRW and by a numerical computer code that allows to
probe an arbitrarily large number of QRW steps. Besides
the entanglement, we have measured the probability of
having such highly entangled states and the quality of
their entanglement, given by the number of terms that
the collapsed position wavefunction contains. We have
also devised an averaged measure of the entanglement
that simplifies the search for a QRW with all or almost
all steps presenting high entanglement.

We have used the Hadamard, Kempe and Z coin oper-
ators as they are the most generally seen throughout the
literature. Moreover, in subsection IVD we also tackled
the general coin operator.

In general maximal entanglement is more frequently
generated when the spin measurement output is oppo-
site to the one used as initial state, in our case down
spin.

We have found two kinds of situations with maximal
entanglement: (i) near maximal entanglement through-
out almost the entire QRW, regardless of the number of
steps, but with negligible probability to occur P ≪ 1
(the larger is the number of steps, the lower is the value
of P ) and (ii) exactly maximal entanglement during a
few steps at the beginning of the QRW with moderately
high probabilities, P ∼ 0.2 − 0.5.

There are no highly probable entangled states contain-
ing a large number of entangled terms. Only during the
first steps of the QRW one can achieve maximal entangle-
ment while having a reasonably high probability. How-
ever, such states contain a limited number of entangled
terms precisely because they occur at the first steps of
the QRW. This happens for instance for down spin mea-
surement at the second step for arbitrary α and arg(β)
with any of the three coins mentioned in section II. The
largest absolute entanglement with an acceptably high
probability and with the above three coins is achieved
after a down spin measurement, occurring with probabil-
ity P = 0.25, at the n = 4 step and managing to entangle
N = 4 terms in the position wavefunction (thus giving
E4 = log2 4 = 2). They are: (i) Hadamard coin for all
α and arg(β) = π/2, 3π/2, (ii) Kempe coin with any α,β
real and (iii) Z coin with α = |β| = 1√

2
and all arg(β).
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