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Abstract

The production system is a theoretical model of computation relevant to the artificial in-

telligence field allowing for problem solving procedures such as hierarchical tree search. In this

work we explore some of the connections between artificial intelligence and quantum computa-

tion by presenting a model for a quantum production system. Our approach focuses on initially

developing a model for a reversible production system which is a simple mapping of Bennett’s

reversible Turing machine. We then expand on this result in order to accommodate for the

requirements of quantum computation. We present the details of how our proposition can be

used alongside Grover’s algorithm in order to yield a speedup comparatively to its classical

counterpart. We discuss the requirements associated with such a speedup and how it compares

against a similar quantum hierarchical search approach.

1 Introduction

The artificial intelligence community has since its inception focused on developing algorithmic pro-
cedures capable of modeling problem solving behaviour. Typically, this process requires the ability
to translate into abstract terms environmental concepts and the set of appropriate actions that act
upon them. This type of knowledge enables problem-solving agents to consider the environment
and the sequence of actions allowing for a given goal state to be reached. This process is also com-
monly referred to as reasoning [25]. The production system is a formalism for describing the theory
of computation. The initial set of ideas for the production system is due to the influential work
of Emil Post [32]. Production system theory describes how to form a sequence of actions leading
to a desired state. Production system theory also presents a computational theory of how humans
solve problems [3]. Some of the best known examples of human cognition-based production sys-
tems include the General Problem Solver [29] [28] [17] [30], ACT [2] and SOAR [24] [23]. Recently,
applications of quantum computation in artificial intelligence were examined in [41].

1

http://arxiv.org/abs/1502.02029v1


1.1 Production systems

A production system is composed of condition-action pairs, i.e. if-then rules, which are also called
productions. A computation is performed with the aid of productions through the transformation
of an initial state into a desired state. The state description at any given time is also referred to
as working memory. A rule is applied when the conditional part is recognized to be part of a given
state. The action describes the respective problem-solving behaviour. Applying an action results
in the state of the problem instance changing accordingly. On each cycle of operation, productions
are matched against the working memory of facts. At any given point, more than one production
might be deemed to be applicable. This subset of productions represents the conflict set. A conflict
resolution strategy is then employed to this subset in order to determine an appropriate production.
Finally, the action of the selected rule is carried out, changing the state of the problem instance.
The operational cycle is brought to a close when a goal state is reached or when no more rules can
be triggered. This general architecture is illustrated in Figure 1.

Control

Recognize Act

Working Memory

Prodution Rules
(Conditon, Action)

C1          A1

C2          A2

Cn          An

Figure 1: General architecture for a production system (adapted from [25]).

1.2 On the power of production systems

The first half of the twentieth century saw the beginning of the first efforts to describe intelligence
in computational terms. Not surprisingly, some of the first attempts focused on developing abstract
models of computation and understanding their computational limits. Some of the best known
models include the Universal Turing Machine [38] [39], Post’s production system [32], followed
closely by the thematically related Markov algorithms [27] and finally Church’s lambda-calculus
[10]. These computational formalisms were later shown to be equivalent in power [1] [11] [12]. This
power equivalency translated into an ability by all models to compute the same set of functions.
Notice that this is equivalent to stating that production systems are comparable in power to a
Turing machine.
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1.3 Objectives and Problems

In this work we propose an alternative model of quantum computation based on production sys-
tem theory with a clear emphasis on problem-solving behaviour. Traditional approaches such as
the quantum Turing machine are complex mechanisms oriented towards general purpose computa-
tion. A quantum production system model would be more suited to typical artificial intelligence
tasks such as reasoning, inference and hierarchical search. From the onset it is possible to imme-
diately pose some questions, namely: How should such a quantum production system model be
developed? What are the requirements of quantum computation and its respective impact on the
aforementioned model? How to develop the associated unitary operator? Additionally, what are the
performance gains from employing quantum mechanics and how does such a proposition compare
against similar strategies? Finally, are there any requirements that should be observed for those
improvements? By employing such an approach we are able to (1) provide a detailed explanation
of how to develop a quantum production system model; (2) assess the main differences between
our proposition and its classical analog; and (3) provide an insight into better describing the power
of quantum computation. However, it is not our intention to present an exact characterization of
quantum computational models. Answering this question would have far-reaching consequences on
complexity theory which are beyond the scope of this work.

The following sections are organized as follows: Section 2 presents the formal definitions for our
proposition of a quantum production system; Section 3 presents an assessment comparing the
performance of classical production systems against our quantum proposition. We present the
concluding remarks of our work in Section 4.

2 Formal Definitions

In this section we present a modular approach of our quantum production system proposition.
Accordingly, we choose to start by introducing the set of definitions incorporating traditional pro-
duction system behaviour in Section 2.1. We then build on these notions to discuss reversibility
requirements associated with quantum computation in Section 2.2. These concepts are then em-
ployed to enumerate the characteristics of a probabilistic production system in Section 2.3. The
probabilistic model will serve as a basis for our quantum production system which will extend those
concepts in Section 2.4.

2.1 Classical Production System

Any approach to a general quantum production system model needs to incorporate powerful com-
putational abstractions, which are not bounded by input length, in a similar manner to the classical
Turing machine [38] and its quantum counterparts. Accordingly, we choose to present the following
definitions through set theory. As previously discussed each production system S consists of a
set of production rules R and a control system C alongside a working memory W . The following
definitions embody the production system behaviour discussed in Section 1.1.

Definition 1: Let Γ be a finite nonempty set whose elements are referred to as symbols. Addi-
tionally, let Γ∗ be the set of finite strings over Γ.
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Definition 2: The working memoryW is capable of holding a string belonging to Γ∗. The working
memory is initialized with a given string, who is also commonly referred to as the initial state
γi.

Definition 3: The set of production rules R has the form presented in Expression 1.

{(precondition, action)|precondition, action ∈ Γ} (1)

Each rules precondition is matched against the contents of the working memory. If the
precondition is met then the action part of the rule can be applied, changing the contents of
the working memory.

Definition 4: The formal definition of a production system S is a tuple (Γ, Si, Sg, R, C) where
Γ, R are finite nonempty sets and Si, Sg ⊂ Γ∗ are, respectively, the set of initial and goal
states. The control function C satisfies Expression 2.

C : Γ → R × Γ× {h, c} (2)

The control system C chooses which of the rules to apply and terminates the computation
when a goal configuration, γg, of the memory is reached. If C(γ) = (r, γ′, {h, c}) the interpre-
tation is that, if the working memory contains symbol γ then it is substituted by the action γ′

of rule r and the computation either continues, c, or halts, h. Traditionally, the computation
halts when a goal state γg ∈ Sg is achieved through a production, and continues otherwise.

2.2 Reversible Requirements

In quantum computation, discrete state evolution of a closed system is achieved through mathe-
matical maps known as unitary operators [31]. These maps correspond to injective and surjective
functions, i.e. bijections. Bijections guarantee that every element of the codomain is mapped by
exactly one element of the domain [7]. From a computational perspective, the bijection requirement
can be obtained by employing reversible computation. Classical computation is an irreversible pro-
cess since at its core the use of many-to-one binary gates makes it impossible to ensure a one-to-one
and onto mapping. A computation is said to be reversible if given the outputs we can uniquely
recover the inputs [36] [37]. Irreversible computational processes can be made reversible by (1)
substituting irreversible logic elements by the adequate reversible equivalents; or (2) by accounting
for the information that is traditionally lost.

The emphasis in production system theory consists in determining what state is obtained after
applying a production. We employ forward chaining when moving from the conditions to the
actions, i.e. an action is applied when all the associated conditions are met. Conversely, there may
be a need for determining which state preceded the current state, i.e. a sort of backtrace mechanism
from a given state up until another state. This mechanism allowing one to reverse the actions applied
and thus obtaining the associated conditions is also commonly referred to as backward chaining.
Although this behaviour seems fairly simple and intuitive it is possible to immediately pose an
elaborate question regarding the system’s nature, namely what are the requirements associated
with a reversible production system?
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Rule Precondition Action Symbolic

R1 ba ab ba → ab
R2 ca ac ca → ac
R3 da ad da → ad
R4 ea ae ea → ae
R5 cb bc cb → bc
R6 db bd db → bd
R7 eb be eb → be
R8 dc cd dc → cd
R9 ec ce ec → ce
R10 ed de ed → de

Table 1: Rule set for sorting a string composed of letters a, b, c, d, and e (adapted from [25]).

It is possible to adapt Bennett’s original set of definitions [4] in order to describe the behaviour of a
production system by a finite set of transition formulas also referred to as quadruples, in an allusion
to the form of Expression 2. Each quadruple maps the present state of the working memory to its
successor. By introducing the tuple terminology it becomes simpler to present the following set of
definitions:

Definition 5: A production system can be perceived as being deterministic if and only if its
quadruples have non-overlapping domains.

Definition 6: A production system is said to be reversible if and only if its quadruples have non-
overlapping ranges.

Definition 7: A reversible and deterministic production system can be defined as a set of quadru-
ples no two of which overlap either in domain or range.

These definitions contrast with Bennett’s more elaborated model where information regarding the
internal states of the control unit before and after the transition, alongside tape movement with the
associated reading and writing information is maintained. In order to fully understand the exact
impact of such requirements lets proceed by considering a production system responsible for sorting
strings composed of letters a, b, c, d, and e based on [40]. The set of production rules is presented
in Table 1. Whenever a substring of the original string matches a rule’s condition the production
is applicable. Applying a specific rule consists in replacing the original substring, i.e. precondition,
by the action string. The sequence of rules that is applied when the working memory is initialized
in state “edcba” is illustrated in Table 2, with the computation proceeding until the string is fully
sorted.

Bennett [4] points to the fact that any irreversible computation can be made reversible by saving
all the information that is typically erased. However, this reversible history needs to be saved into a
resource. Reusing this resource would require the information to be erased or thrown away, merely
postponing the problem. The solution relies on performing a computation, saving the intermediate
information that is typically lost, and then using this information to backtrack to the original input.
Since both forward and backward stages are done in a reversible manner, the overall process always
preserves the original information.
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Iteration Number Working Memory Conflict Set Rule Fired Continue?

0 edcba {R1, R5, R8, R10} R1 continue
1 edcab {R2, R8, R10} R2 continue
2 edacb {R5, R3, R10} R3 continue
3 eadcb {R5, R8, R4} R4 continue
4 aedcb {R5, R8, R10} R5 continue
5 aedbc {R6, R10} R6 continue
6 aebdc {R8, R7} R7 continue
7 abedc {R8, R10} R8 continue
8 abecd {R9} R9 continue
9 abced {R10} R10 continue
10 abcde ∅ ∅ halt

Table 2: An example of the sequence of rules applied for sorting a string composed of letters a, b,
c, d, and e.

However, before undoing the computation, care has to be taken in order to ensure that the output
is preserved. This requires copying the output to an output register, an operation which has to
be performed reversibly. Once the output copy has been completed it is possible to proceed with
the backward stage, i.e reverse the consequences of each quadruple application. Eventually, the
computation terminates, the production system returns to its original state and the result of the
procedure is stored in the output medium. In Bennett’s original work the reversible Turing machine
is composed of three tapes, namely [4]:

• working tape - where the program’s input is initially stored and computation is performed in
order to obtain an output which is later reversed to the original input;

• history tape - where the information that is traditionally thrown away is kept, once the
program’s output has been copied the history information is used in order to revert the
working tape to its original state;

• output tape - where the program’s output is stored.

By observing Table 2 it is possible to see that in order to ensure that the original input is obtained,
the sequence of rules leading from an initial state γi to a goal state γg needs to be accounted for.
This sequence of rules can be used in order to “undo” each action. In doing so it is possible to obtain
each precondition that led to a particular action being applied, up until an initial state γi ∈ Si.
Notice that the quadruples presented in Expression 2 effectively convey information about which
production is applied when going from a certain condition to the appropriate action. Additionally,
in production system theory there exists a strong emphasis on the sequence of rules leading up to
a target state. This situation contrasts with the traditional interest of merely knowing the final
state of the working memory. If we allow ourselves to change Bennett’s original definitions of the
reversible Turing machine then it becomes possible to obtain a mapping for a reversible production
system. This process can be performed by requiring that

1. applying a production results in its addition to the history tape, instead of a new control-
unit state. Since the quadruple and production rules are equivalent concepts we are basically
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Iteration Memory Rule History Tape Output Tape

0 edcba R1 { } { }
1 edcab R2 {R1} { }
2 edacb R3 {R1, R2} { }
3 eadcb R4 {R1, R2, R3} { }
4 aedcb R5 {R1, R2, R3, R4} { }
5 aedbc R6 {R1, R2, R3, R4, R5} { }
6 aebdc R7 {R1, R2, R3, R4, R5, R6} { }
7 abedc R8 {R1, R2, R3, R4, R5, R6, R7} { }
8 abecd R9 {R1, R2, R3, R4, R5, R6, R7, R8} { }
9 abced R10 {R1, R2, R3, R4, R5, R6, R7, R8, R9} { }
10 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} { }

11 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} { }
12 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
13 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
14 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

15 abced R10−1 {R1, R2, R3, R4, R5, R6, R7, R8, R9} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

16 abecd R9−1 {R1, R2, R3, R4, R5, R6, R7, R8} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

17 abedc R8−1 {R1, R2, R3, R4, R5, R6, R7} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

18 aebdc R7−1 {R1, R2, R3, R4, R5, R6} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

19 aedbc R6−1 {R1, R2, R3, R4, R5} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

20 aedcb R5−1 {R1, R2, R3, R4} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

21 eadcb R4−1 {R1, R2, R3} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

22 edacb R3−1 {R1, R2} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

23 edcab R2−1 {R1} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

24 edcba R1−1 { } {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

Table 3: Operation of a reversible production system based on the example of Table 2 and Bennett’s
model for a reversible Turing machine. The underbar denotes the position of the head.

storing the same transitional information employed by Bennett’s model;

2. once the computation halts it is necessary to copy the contents of the history tape to the
output tape, this contrasts with the original copying of the working tape. In order to do
so the history tape’s head needs to be place at the tape’s beginning. Afterwards, the copy
process from the history tape to the output tape can proceed.

3. upon the copying mechanism’s conclusion, the output tape’s head needs to be placed at the
beginning. This process can be performed by shifting left the output tape until a blank symbol
is found.

Table 3 illustrates this set of ideas for a reversible production simple based on the string sorting
production system presented earlier (Table 1 and Table 2). As it is possible to verify the computation
proceeds normally for iteration 0 through 10, also known as the forward computation stage. The
only alteration to Bennett’s model consists in adding the productions fired to the history tape. Once
this stage has concluded the history tape’s head needs to be properly placed at the beginning. This
step is carried out in iteration 11. In this case we opted to represent the position of a tape’s head by
an underbar. The system then proceeds in iteration 12 by copying the contents of the history tape
onto the output tape. Additionally, the output tape’s head is placed at the beginning in iteration
13. The last stage of the computation consists in undoing each one of the applied productions, as
illustrated from iteration 14 to 24. For this stage we opted to represent the inverse of a rule R
mapping a precondition A into an action B, i.e. R : A → B, by R−1 such that R−1 : B → A.
By inverting the rules applied we are for all purposes reversing the consequences of each associated
quadruple.
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2.3 Probabilistic Production System

Consider a production system whose control strategy chooses a rule to apply from set of production
rules based on a probability distribution. This behaviour can be formalized with a simple reformu-
lation of Expression 2 as illustrated by Expression 3, where C(γ, r, γ′, d) represents the probability
of choosing rule r, substituting symbol γ with γ′ and making a decision d on whether to continue
or halt the computation if the memory contains γ.

C : Γ×R× Γ× {h, c} − [0, 1] (3)

Additionally, it would have to be required that ∀γ ∈ Γ Expression 4 be observed

∑

∀(r,γ′,d)∈R×Γ×{h,c}
C(γ, r, γ′, d) = 1 (4)

This modification to the deterministic production system allows the control strategy to yield dif-
ferent states with probabilities that must sum up to 1. In such a model, a computation can be
perceived has having an associated probability which is simply the multiplication of each produc-
tion’s probability. If the several possibilities are accounted for the overall computational process
presents a tree form. Figure 2 illustrates a production system whose set of production rules is
binary, i.e. {p0, p1}. The root node A depicts the initial state in which the working memory is ini-
tialized. Each depth layer d is responsible for adding bd nodes to the tree, where b is the branching
factor induced by the production set cardinality. For this specific case b = 2. The remaining tree
nodes represent states achieved by applying the sequence of productions leading up to that specific
element, e.g. state J is achieved by applying sequence {p0, p1, p0}.

A

B

D E

H I J K

C

F G

L M N O

Figure 2: Tree structure representing the multiple computational paths of a probabilistic production
system.
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2.4 Quantum Production System

A suitable model for a probabilistic production system enables a mapping between real-valued
probabilities and complex-value quantum amplitudes. More specifically, the complex valued con-
trol strategy would need to behave as illustrated in Expression 5 where C(γ, r, γ′, d) provides the
amplitude if the working memory contains symbol γ then rule r will be chosen, substituting symbol
γ with γ′ and a decision d made on whether to continue or halt the computation.

C : Γ×R× Γ× {h, c} − C (5)

The amplitude value provided would also have to be in accordance with Expression 6, ∀γ ∈ Γ

∑

∀(r,γ′,d)∈R×Γ×{h,c}
|C(γ, r, γ′, d)|2 = 1 (6)

Is it possible to elaborate on the exact unitary form that C should take? If we were to develop a
classical computational gate for calculating Expression 2 then it would have a form as illustrated in
Figure 3a. Since multiple arguments could potentially map onto the same element such a strategy
would not allow for reversibility. Theoretically, any irreversible production system can be made
reversible by adding some auxiliary input bits and through the addition modulo 2 operation [37],
a process formalized in Expression 7 and shown in Figure 3b. Since the inputs are now part of the
outputs, this mechanism allows for a bijection to be obtained.

(a) (b)

Figure 3: An irreversible control strategy 3a can be made reversible 3b through the introduction of
a number of constants and auxiliary input and output bits.

(γ, b0, b1, b2)
︸ ︷︷ ︸

input vector v1

C→ (γ, r ⊕ b0, γ
′ ⊕ b1, {h, c} ⊕ b2)

︸ ︷︷ ︸

output vector v2

(7)

Notice that the reversible gate can be perceived as acting upon an input vector v1 and delivering v2.
If we adopt a linear algebra perspective alongside the Dirac notation [15] [16], then such behaviour
can be described as shown in Expression 8, where C is the required unitary operator.

C|v1〉 = |v2〉 (8)
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Based on Expression 7 and Expression 8 it becomes possible to develop a unitary operator C.
Accordingly, C acts upon an input vector v1 conveying specific information about the argument’s
state. From Expression 7 we can verify that any input vector |v1〉 should be large enough to
accommodate γ, b0, b1 and b2. Since b0, b1 and b2 will be used for bitwise addition modulo 2
operations with, respectively, r, γ′ and {h, c}, we need to determine the appropriate dimensions
for a binary encoding of these elements. Assume that:

• α = ⌈log2 |Γ|⌉, represents the number of bits required to encode the symbol set

• β = ⌈log2 |R|⌉, represents the number of bits required to encode each one of the productions;

• δ is a single bit used to encode either h or c

If we employ a binary string to represent this information, then its length will be α + β + δ bits,
thus allowing for a total of 2α+β+δ combinations. This information about the input’s state can be
conveyed in a column vector v1 of dimension 2α+β+δ. The general idea being that the mth possible
combination can be represented by placing a 1 on the mth row of such a vector. These same
principles are still observed by v2. The unitary operator’s responsibility relies on interpreting such
information and presenting an adequate output vector v2. The overall requirements of unitarity
alongside the dimensions of input and output vectors imply that unitary operator C will have
dimension 2α+β+δ × 2α+β+δ.

A parallel can be established between C’s behaviour and the truth table concept of classical gates.
Truth tables are classical mechanisms employed to describe logic gates employed in electronics. The
tables list all possible combinations of the inputs alongside the respective results [26]. In a similar
manner, we can build unitary operator C by going through all possible combinations and decoding
the information present in each combination. This procedure is illustrated through pseudo-code
in Procedure 1. Lines 1-3 are employed in order to determine the required number of bits for our
encoding mechanism. These values can also be used to determine the dimension 2α+β+δ × 2α+β+δ

of unitary operator C. This operator is initialized in line 4 as a matrix with all entries set to
zero.

The cycle for from lines 5-15 is responsible for going through all possible combinations. Line 6 of
the code obtains a string S which is the binary version of decimal combination λ, represented as
λ(2) to illustrate base-2 encoding. Recall from Expression 3 that each input vector needs to convey
information about γ, b0, b1 and b2. Accordingly, for each λ we need to parse the different elements
of the string in order to determine those values. This process is illustrated through lines 7-10
which are responsible for obtaining the binary substrings. For any string S, S[i, j] is the contiguous
substring of S that starts at position i and ends at position j of S [20]. Line 11 is responsible for
invoking function mapBinaryEncoding which maps substring S1 to a symbol γ ∈ Γ. This function
can be easily calculated with the help of any trivial data structure.

Once the input symbol γ has been determined it is possible to calculate the transition depicted in
Expression 2. We should be careful to point out that the transition calculated in Line 12 through
function C should not be confused with the associated unitary operator C of line 4. The next logical
step consists in forming a binary string represented as w(2) which is simply the concatenation of
elements S1, r(2) ⊕ S2, γ

′
(2) ⊕ S3 and d(2) ⊕ S4. Again, this step is done by employing the base-2

version of elements r, γ′ and d. After the conclusion of line 13 we have all the information required to
determine the corresponding mapping, λ can be viewed as the decimal encoding of the input state,

10



whilst ω can be interpreted as the new decimal state achieved. This behaviour can be adequately
incorporated into the unitary operator by marking column λ and row ω with a one, a procedure
realized in line 14.

Procedure 1 Pseudo code for building unitary operator C

1: α = ⌈log2 |Γ|⌉
2: β = ⌈log2 |R|⌉
3: δ = 1
4: C = zeros[2α+β+δ, 2α+β+δ]
5: for all integers λ ∈ [0, 2α+β+δ] do
6: S = λ(2)
7: S1 = S[0, α− 1]
8: S2 = S[α, α+ β − 1]
9: S3 = S[α+ β, 2α+ β − 1]

10: S4 = S[2α+ β, 2α+ β + δ − 1]
11: γ = mapBinaryEncoding( Γ, S1 )
12: C(γ) = (r, γ′, d)
13: ω(2) = S1, r(2) ⊕ S2, γ

′
(2) ⊕ S3, d(2) ⊕ S4

14: Cω,λ = 1
15: end for

Correctness Proof: In order to verify the correctness of Procedure 1 we need to confirm that operator
C is indeed a bijective mapping. At its core a bijection performs a simple permutation of all possible
input state combinations. Accordingly, for a collision to occur, i.e. multiple arguments mapping
into the same image, would require that several λ’s produced the same ω. If the transition function
employed in Line 12 is irreversible then it is conceivable that different γ’s may produce the same
output vector (r, γ′, d). However, the new state w besides contemplating output (r, γ′, d) through
the addition modulo 2 elements r(2) ⊕ S2, γ

′
(2) ⊕ S3 and d(2) ⊕ S4 also takes into consideration the

original input symbol γ allowing for a differentiation of possible collision states. As a consequence,
for a collision to still occur would require that function mapBinaryEncoding produced the same
γ for different binary strings. This same binary mapping behaviour can be easily avoided with
proper management of an adequate data structure thus guaranteeing the correctness of such a
procedure.

Notice that unitary operator C is only responsible for applying a single production of the control
strategy. This represents a best case scenario where a problem’s solution can be found within
the immediate neighbours, i.e. those nodes that can be reached by applying a single production.
However, the production system norm relies on having to apply a sequence of rules before obtaining
a solution state. Our proposition can be easily extended in order to apply multiple steps. Such
an extension would require developing a logical circuit employing elementary gates C alongside
any necessary output redirection to the adequate inputs. Algebraically, such a procedure would
require unitary operator composition acting upon the appropriate inputs, which would continue
to guarantee overall reversibility. Additionally, we should emphasize that any potential unitary
operator requires the ability to verify if the conditional part of a rule is met, i.e. to determine if a
string contains a substring which can be achieved with simple comparison operators.
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3 Classical vs. Quantum Comparison

Deutsch described a universal model of computation capable of simulating Turing machines with
inherent quantum properties such as quantum parallelism that cannot be found in their classical
counterparts [13]. However, the number of computational steps required by Deutsch’s model grew
exponentially as a function of the simulated Turing’s machine running time. Subsequently, a more
efficient model for a universal quantum Turing machine was proposed in [6]. In the same work the
authors questioned themselves if a quantum turing machine can provide any significant advantage
over their classical equivalents. They proceeded by showing that a quantum turing machine de-
scribed in [14] is capable of efficiently solving the Fourier sampling problem. However, care was also
employed in order to emphasize that their result did not prove that quantum Turing machines are
more powerful than probabilistic Turing machines, since the latter can sample from a distribution
within ǫ total variation distance of the desired Fourier distribution [6]. Later, Shor’s algorithm for
fast factorization [33] presented further evidence on the power of quantum computation.

Naturally, the question arises: how does our quantum production system proposal fare against its
classical counterpart? Namely, what do we stand to gain by applying quantum computation? And
what are the requirements associated to those improvements? In order to answer these questions
consider a unitary operator C which is applied to an initial state x ∈ Si. Additionally, assume that
C needs to be applied a total of d times for a result to be obtained, where d ∈ N is chosen such
that the computation is able to proceed until it stops. The result of applying C can be represented
as g(x) which in production system theory can be a simple output of the productions applied. As
a consequence, the quantum register employed needs to convey information about the initial state
and also be large enough to accommodate for g(x). We opted to represent this requirement by
employing a unspecified length register |z〉. Accordingly, we can represent the initial state of the
system by the left-hand side of Expression 9. The right-hand side represents the result obtained
after unitary evolution.

Cd|x, z〉 = |x, z ⊕ g(x)〉 (9)

In order to gain a quantum advantage over the classical version we need to employ the superposition
principle. Accordingly, it is possible to initialize register |x〉 as a superposition, |ψ〉, of all starting
states, a procedure illustrated in Expression 10, where Si ⊂ Γ∗ is the set of starting states. This
procedure is also depicted in Figure 4, where multiple binary searches are performed simultaneously,
with the dotted line representing initial nodes that, for reasons of space, are not shown, but are
still present in the superposition. Now consider a scenario where the production system definition
only contemplates a single initial state, i.e. |Si| = 1. Since it is not possible to explore the
high levels of parallelism provided by the superposition principle, we would therefore not have any
significant advantage over the sequential procedure by applying |ψn〉. However, if the productions
set cardinality is greater than one, then there exist several neighbour states which which can be
employed as initial states thus circumventing the problem.

|ψ〉 = 1
√

|Si|
∑

s∈Si

|s〉 (10)
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Figure 4: Parallel search with Si = {A,B, · · · , Z} and |ψn〉 = 1√
|Si|

∑

s∈Si
|s〉 . The dotted lines

represent the initial states belonging to superposition |ψn〉

This approach differs from other strategies of hierarchical search, namely [34] and [35], who, re-
spectively, (1) evaluate a superposition of all possible tree paths up to a depth-level d in order to
determine if a solution is present and (2) present an hierarchical decomposition of the quantum
search space through entanglement detection schemes.

The following sections are organized as follows: Section 3.1 presents the main results on Grover’s
algorithm. These concepts will then be extended in Section 3.2 in order to present a system
combining our production system proposal alongside the quantum search algorithm. Finally, we will
conclude in Section 3.3 by discussing the performance gains achieved over the classical production
system equivalent.

3.1 The quantum search algorithm

Traditionally, production system theory is applied to problems devoid of an element of structure,
and thus requiring the search space of all possible combinations to be exhaustively examined. The
class NP consists of those problems whose possible configurations can be verified in polynomial-
time. Grover’s algorithm works by amplifying the amplitude of the solution states. The algorithm
is able to “mark” a state as a solution by employing an oracle O which, alongside an adequate
initialization of the answer register in a superposition state, effectively flips the amplitudes of those
states. This behaviour is illustrated in Expression 11, where |x〉 and |y〉 represent, respectively, an
n-bit query register and a single bit answer register. Function f(x) simply verifies if x is a solution,
as formalized in Expression 12. The quantum search algorithm [18] is ideally suited for solving NP
problems and allows for a quadratic speedup relatively to classical algorithms. Classical algorithms
require O(N) time for N -dimensional search spaces, whilst Grover’s algorithm requires O(

√
N )

time, or in terms of |x〉’s dimension O(
√
2n ) time.

O : |x〉|y〉 7→ |x〉|y ⊕ f(x)〉 (11)
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f(x) =

{
1 if x is a solution
0 otherwise

(12)

The amplification process is achieved by flipping the amplitude of the solution states and performing
a inversion about the mean of the amplitudes. The overall effect of such a procedure, referred to
as Grover’s iterate, induces a higher probability of observing a solution when a measurement is
performed over the superposition state. Grover’s algorithm was experimentally demonstrated in
[9]. The quantum search algorithm systematically increases the probability of obtaining a solution
with each iteration. Upon conclusion a measurement is performed in a quantum superposition. The
superposition state represents the set of all possible results. Grover’s approach sparked interest
by the scientific community on whether it would be possible to devise a faster search algorithm.
Subsequently, it was proved any procedure based on oracles employing total function evaluation will
always require at least Ω(

√
N ) time [5]. Grover and Radhakrishnan [19] considered the speedup

achievable if one was only interested in determining the first m bits of a n bit solution string. In
practice, their approach proceed with analysing different sections of the quantum search space.
The authors prove that it is possible to obtain a speedup, however, as m grows closer to n the
computational gains obtained disappear [19]. This speedup was then improved in [21] and [22] and
an extension to multiple solutions was presented in [8].

3.2 Oracle Extension

In this section we present an extension to the oracle operator employed by Grover’s algorithm
allowing it to be combined alongside our quantum production system proposal. As a result we
need to determine what happens when two different functions f and g are combined into a single
unitary evolution, as illustrated by Expression 13. In this case we opted to employ three quantum
registers, namely |x〉 which is configured with the system’s initial state, alongside registers |y〉 and
|z〉 where, respectively, the output of functions f(x) and g(x) is stored. The original amplitude

flipping process is a result of placing register |y〉 in the superposition state |0〉−|1〉√
2

. Accordingly, we

need to verify if the amplitude flip still holds with the oracle formulation of Expression 13 alongside
|y〉’s superposition initialization. This behaviour is shown in Expression 14. From Expression 15
we are able to conclude that despite the new oracle formulation the amplitude flipping continues
to occur.

O|x, y, z〉 = |x, y ⊕ f(x), z ⊕ g(x)〉 (13)
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O|x〉 |0〉 − |1〉√
2

|z〉 = 1√
2
(|x〉|f(x)〉|z ⊕ g(x)〉 −O|x〉|1 ⊕ f(x)〉|z ⊕ g(x)〉) (14)

=

{
1√
2
(|x〉|0〉|z ⊕ g(x)〉 − |x〉|1〉|z ⊕ g(x)〉) if f(x) = 0

1√
2
(|x〉|1〉|z ⊕ g(x)〉 − |x〉|0〉|z ⊕ g(x)〉) if f(x) = 1

=

{

|x〉 |0〉−|1〉√
2

|z ⊕ g(x)〉 if f(x) = 0

|x〉 |1〉−|0〉√
2

|z ⊕ g(x)〉 if f(x) = 1

= (−1)f(x)|x〉 |0〉 − |1〉√
2

|z ⊕ g(x)〉 (15)

3.3 Performance Analysis

In order to proceed with our performance analysis lets consider we have a production system whose
definitions are incorporated into a unitary operator C combining the results of Expression 9 and
Expression 13. Accordingly, C will have the form presented in Expression 16, where |x〉 is initialized
with a superposition of the production system starting states. In addition we employ register |z〉
which has an unspecified length in order to accommodate for the productions applied, i.e the output
growth of function g(x). By employing such a formulation for our production system C we are able
to employ it alongside Grover’s algorithm in order to speedup the computation. In our particular
case we are interested in changing f(x)’s definition in order to check if a goal state s ∈ Sg is achieved
after having applied d productions. E.g. consider that state M shown in Figure 2 is a goal state,
then, assuming no backtracking occurs, such state can be reached by applying productions p1, p0
and p1. As a consequence we can express such state evolution as C3|A, 0,0〉 = |x, 1, {p1, p0, p1}〉,
where 0 represents a vector of zeros. Function f new definition is presented in Expression 17. The
state of the system is described by a unit vector in a Hilbert space H2m = H2n ⊗H2 ⊗H2p .

Cd|x, y, z〉 = |x, y ⊕ f(x), z ⊕ g(x)〉 (16)

f(x) =

{
1 if Cd|x〉 ∈ Sg

0 otherwise
(17)

Grover’s original speedup was dependent on superposition |ψ〉 and the associated number of possible
states. More concretely, the dimension of the space spanned is dependent on the dimension of the
query register |x〉 employed. However, by applying an oracle C whose behaviour mimics that
of Expression 16 the elements present in superposition |ψ〉 will interact with registers |y〉 and
|z〉. Typically, register |y〉 is ignored when evaluating the running time, producing an overall
superposition |ξ〉 which will no longer span the original 2n possible states but 2n+p. From an
algebraic perspective, the interaction process is due to the tensor product employed to describe the
overall state between |x〉, |y〉 and |z〉. As a result, it is possible to pose the following question: what
can be said about the growth of |z〉 and its respective impact on overall system performance?
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Assume that a solution state can always be found after d computational steps, either by indeed
finding a goal state or by applying an heuristic function to determine an appropriate state selection.
Classically, a sequential procedure would require C = |Si| × d iterations, one for each initial state
in need of processing. Is it possible to do any better with our proposition? Answering this question
requires determining appropriate boundary conditions on the exact dimensions of |z〉 for which it
is still possible to obtain a speedup over classical procedures. By employing Grover’s algorithm
we know that the search procedure will span the dimension of |ξ〉 which varies between [2n, 2n+p].
Accordingly, in the very unlikely best case scenario, we will be able to search all elements in
O(

√

|Si| ) time. With each Grover iterate we need to apply oracle C a total of d times, which

implies an overall number of invocations equal toQ =
√

|Si| ×d. Therefore, a comparison is required
between the classical and quantum number of iterations, respectively, C and Q, as illustrated in
Expression 18. The ratio presented in Expression 18 allows us to conclude that C and Q differ by
a factor of

√

|Si| , effectively favoring the quantum proposal.

C

Q
=

|Si|d
√

|Si| d
=

√

|Si| (18)

However, such a ratio does not take into account the dimension of register |z〉. Therefore, we need
to determine what happens when |z〉 grows and how it affects overall performance. Let m denote
the number of bits employed by registers |x〉 and |z〉, then the number of quantum iterations will be
Q =

√
2m ×k. Accordingly, Expression 18 can be restated in terms of m, as depicted in Expression

19 which effectively conveys the notion that each additional bit added to |z〉 impacts the C
Q

ratio

negatively by a factor of 1√
2
. If register |z〉 is composed by p bits this means that the overall

decrease in performance will be p√
2

|Si|√
2n

, where n is the number of bits required to encode the set

of initial states. This result can be restated as p√
2

√

|Si| if we consider Grover’s speedup in light

of the dimension of Si.

C

Q
=

|Si|√
2m

(19)

Additionally, we are also interested in determining when is the number of quantum iterations Q
smaller than the number of classical iterations C, as shown in Expression 20.

Q < C (20)

⇔
√
2m k < |Si|k

⇔ 2m < |Si|2

⇔ m < log2 |Si|2 (21)

Expression 21 needs to be further refined since we are trying to determine m ∈ N but the right-hand
side may produce a value belonging to R. This output is a consequence of having to deal with initial
state sets Si whose cardinality is not a power of 2. Notice that the measurement of performance
we have chosen, respectively, the ratio C/Q will eventually be 1 when m = log2 |Si|2. Accordingly,
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if a larger number of bits is employed it effectively yields C/Q < 1 which will no longer translate
into a speedup by the quantum version. That being the case, we choose to restrict our model to
those cases where m < ⌊log2 |Si|2⌋. Furthermore, m should also be large enough to contain the
set of possible binary encodings of Si, i.e. m ≥ ⌈log2 |Si|⌉. The general boundary conditions are
presented in Expression 22.

⌈log2 |Si|⌉ ≤ m ≤ ⌊log2 |Si|2⌋ (22)

Figure 5 illustrates the three-dimensional plot of Expression 19 as a function of a number of initial
nodes in the range [1, 213] alongside the required boundary conditions described by Expression 22.
The plot presents the characteristic ladder effect associated with employing logarithmic functions
in conjunction with functions that map real domains to the integer set. As a consequence, a plateau
is reached for some combinations where a number of different cardinality Si sets can be mapped
by the same number of bits, thus presenting the same C/Q ratio. Relinquishing the floor and
ceiling functions allows us to obtain a crude comparison between the lower and upper limits of
Expression 22. More concretely, we are able to verify that these limits differ by a log2 |Si| factor.
This means that the system, besides requiring ⌈log2 |Si|⌉ bits for register |x〉, can still employ an
additional log2 |Si| bits to encode g’s output and in the process still perform better than its classical
counterpart.

Figure 5: The performance measurement ratio C/Q for |Si| ∈ [1, 213] illustrating the logarithmic
growth ⌈log2 |Si|⌉ ≤ m ≤ ⌊log2 |Si|2⌋ alongside the p√

2

√

|Si| associated decrease in performance.
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3.3.1 On the growth of g’s output

Consider a production system with a constant branching factor where a set of productions is applied
then there will exist a total of |R|d possible tree paths at depth level d, who will require ⌈log2 |R|d⌉
bits for an adequate encoding. Clearly, if ⌈log2 |R|d⌉ ≤ ⌈log2 |Si|⌉ then g’s output can encode
the sequence of productions applied. If this is not the case we may opt to encode an unspecified
number of productions applied according to some previously chosen strategy. As a consequence, our
proposal may be more appropriate when dealing with large Si sets since this would automatically
imply that we would have at our disposition a large set of working bits. Even if this is not the case
it is still possible to employ as initial states the set of nodes that can be found at a depth d which,
as previously mentioned, typically grow in an exponential fashion.

3.3.2 Comparison with an hierarchical search model

Finally, it is important to compare our quantum production system performance against a similar
proposal described in [34]. In their work the authors also employ Grover’s algorithm alongside an
hierarchical search oracle where a superposition consisting of all possible paths up to depth-level d
is evaluated. The authors chose to build a binary string encoding in a logical fashion the sequence
of actions taken. As a consequence a total of p1 = d × ⌈log2|R|⌉ bits is required. This approach
contrasts with the p2 = ⌈log2 |R|d⌉ bits employed to encode all possible paths. However, if |R| is a
power of 2, then the use of the ceiling functions is no longer required and it is possible to conclude
that p1 = p2 = p. For that reason, the number of bits m required by our current proposition will
always be bigger than p, since m = n + p + 1. This implies that the number of Grover iterations
to apply in [34], respectively, O(

√
2p ) will also be less than the O(

√
2n+p+1 ) time required with

this method. If a ratio is performed between both procedures then we are able to verify that they

differ by a factor of
√
2p√

2n+p+1
=

√
1

2n+1 in favor of [34]. However, despite loosing in performance

terms, our model differs significantly in nature. The authors original proposal focused on exploiting
hierarchical search through polynomial time verification of paths, whilst we propose building a
generic mechanism for hierarchical search through quantum operators.

4 Conclusions

In this work we presented an artificial intelligence inspired quantum computational model based
on production system theory. Quantum computation is an inherently reversible process and as a
consequence the proposed model would also allow for a reversible decision process. Since production
systems share some key characteristics with classical tree search the proposed model also allows
for an hierarchical quantum search mechanism. By formalizing the theoretical foundations of our
approach we were able to enumerate the reversible and quantum requirements of our model. These
requirements enabled us to present a method focusing on the construction of the unitary operator
associated with our quantum production system. We then extended our proposition in order to
combine with Grover’s algorithm. Doing so allowed us to adequately study the performance of
our system and enumerate those cases in which our model outperforms its classical counterpart.
Although our proposition is able to compute faster the p√

2

√

|Si| performance penalty associated
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with each additional bit required is expensive, favoring the choice of models that rely exclusively
on exploiting the class of problems NP through polynomial time verifications and superpositions of
all possible paths.
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