Skip to main content
Log in

Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a practical scheme to concentrate entanglement in a pair of unknown partially entangled three-atom W states in cavity quantum electrodynamics (QED). In the scheme, Alice, Bob, and Charlie at three distant parties can obtain one maximally entangled three-atom W state with the certain success probability from two identical partially entangled three-atom W states by local operations and classical communication. We propose the detailed process of entanglement concentration and analyze the experimental feasibility of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett C.H., Brassard G., Popescu S., Schumacher B., Smolin J.A., Wootters W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  2. Bennett C.H., Di Vincenzo D.P., Smolin J.A., Wootters W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A. 54, 3824 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  3. Deutsch D., Ekert A., Jozsa R., Macchiavello C., Popescu S., Sanpera A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)

    Article  ADS  Google Scholar 

  4. Aschauer H., Briegel H.J.: Private entanglement over arbitrary distances, even using noisy apparatus. Phys. Rev. Lett. 88, 047902 (2002)

    Article  ADS  Google Scholar 

  5. Briegel H.J., Dür W., Cirac J.I., Zoller P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  6. Dür W., Briegel H.J., Cirac J.I., Zoller P.: Quantum repeaters based on entanglement purification. Phys. Rev. A. 59, 169 (1999)

    Article  ADS  Google Scholar 

  7. Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A. 53, 2046 (1996)

    Article  ADS  Google Scholar 

  8. Lo H.K., Popescu S.: Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A. 63, 022301 (2001)

    Article  ADS  Google Scholar 

  9. Bose S., Vedral V., Knight P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A. 60, 194 (1999)

    Article  ADS  Google Scholar 

  10. Yamamoto T., Koashi M., Imoto N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A. 64, 012304 (2001)

    Article  ADS  Google Scholar 

  11. Zhao Z., Pan J.W., Zhan M.S.: Practical scheme for entanglement concentration. Phys. Rev. A. 64, 014301 (2001)

    Article  ADS  Google Scholar 

  12. Yang M., Zhao Y., Song W., Cao Z.L.: Entanglement concentration for unknown atomic entangled states via entanglement swapping. Phys. Rev. A. 71, 044302 (2005)

    Article  ADS  Google Scholar 

  13. Cao Z.L., Zhang L.H., Yang M.: Concentration for unknown atomic entangled states via cavity decay. Phys. Rev. A. 73, 014303 (2006)

    Article  ADS  Google Scholar 

  14. Pan J.W., Simon C., Brukner C., Zeilinger A.: Entanglement purification for quantum communication. Nature. 410, 1067 (2001)

    Article  ADS  Google Scholar 

  15. Zhao Z., Yang T., Chen Y.A., Zhang A.N., Pan J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)

    Article  ADS  Google Scholar 

  16. Yamomoto T., Koashi M., Ozdemir S.K., Imoto N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature. 421, 343 (2003)

    Article  ADS  Google Scholar 

  17. Wang H.F., Zhang S., Yeon K.H.: Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states. J. Opt. Soc. Am. B. 27, 2159 (2010)

    Article  ADS  Google Scholar 

  18. Murao M., Plenio M.B., Popescu S., Vedral V., Knight P.L.: Multiparticle entanglement purification protocols. Phys. Rev. A. 57, R4075 (1998)

    Article  ADS  Google Scholar 

  19. Dür W., Aschauer H., Briegel H.J.: Multiparticle entanglement purification for graph states. Phys. Rev. Lett. 91, 107903 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  20. Aschauer H., Dür W., Briegel H.J.: Multiparticle entanglement purification for two-colorable graph states. Phys. Rev. A. 71, 012319 (2005)

    Article  ADS  Google Scholar 

  21. Wang H.F., Zhu A.D., Zhang S., Yeon K.H.: Scheme for entanglement concentration of unknown atomic entangled states by interference of polarized photons. J. Phys. B: At. Mol. Opt. Phys. 43, 235501 (2010)

    Article  ADS  Google Scholar 

  22. Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A. 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  23. Imamoglu A., Awschalom D.D., Burkard G., Di Vincenzo D.P., Loss D., Sherwin M., Small A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999)

    Article  ADS  Google Scholar 

  24. Santos M.F., Solano E., de Matos Filho R.L.: Conditional large fock state preparation and field state reconstruction in cavity QED. Phys. Rev. Lett. 87, 093601 (2001)

    Article  ADS  Google Scholar 

  25. Lin G.W., Ye M.Y., Chen L.B., Du Q.H., Lin X.M.: Generation of the singlet state for three atoms in cavity QED. Phys. Rev. A. 76, 014308 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  26. Feng M.: Quantum computing with trapped ions in an optical cavity via Raman transition. Phys. Rev. A. 66, 054303 (2002)

    Article  ADS  Google Scholar 

  27. Zheng S.B., Guo G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  28. Yamaguchi F., Milman P., Brune M., Raimond J.M., Haroche S.:Quantum search with two-atom collisions in cavity QED: Phys. Rev. A. 66, 010302(R) (2002)

    ADS  Google Scholar 

  29. Wang H.F., Zhu A.D., Zhang S., Yeon K.H.: Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics. New J. Phys. 13, 013021 (2011)

    Article  ADS  Google Scholar 

  30. Raimond J.M., Brune M., Haroche S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Scully M.O., Zubairy M.S.: Cavity QED implementation of the discrete quantum Fourier transform. Phys. Rev. A. 65, 052324 (2002)

    Article  ADS  Google Scholar 

  32. Barenco A., Bennett C.H., Cleve R., Di Vincenzo D.P., Margolus N., Shor P., Sleator T., Smolin J.A., Weinfurter H.: Elementary gates for quantum computation. Phys. Rev. A. 52, 3457 (1995)

    Article  ADS  Google Scholar 

  33. Guo G.P., Li C.F., Li J., Guo G.C.: Scheme for the preparation of multiparticle entanglement in cavity QED. Phys. Rev. A. 65, 042102 (2002)

    Article  ADS  Google Scholar 

  34. Guo G.C., Zhang Y.S.: Scheme for preparation of the W state via cavity quantum electrodynamics. Phys. Rev. A. 65, 054302 (2002)

    Article  ADS  Google Scholar 

  35. Han C., Xue P., Guo G.C.: Multipartite entanglement preparation and quantum communication with atomic ensembles. Phys. Rev. A. 72, 034301 (2005)

    Article  ADS  Google Scholar 

  36. Li J.G., Zou J., Cai J.F., Shao B.: Preparation of a 2n-qubit W state via entanglement transfer. Phys. Lett. A. 361, 59 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Zheng S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A. 68, 035801 (2003)

    Article  ADS  Google Scholar 

  38. Zou X.B., Pahlke K., Mathis W.: Generation of an entangled state of two three-level atoms in cavity QED. ibid. 67, 044301 (2003)

    ADS  Google Scholar 

  39. Ye L., Yu L.B., Guo G.C.: Generation of entangled states in cavity QED. ibid. 72, 034304 (2005)

    ADS  Google Scholar 

  40. Nogues G., Rauschenbeutel A., Osnaghi S., Brune M., Raimond J.M., Haroche S.: Seeing a single photon without destroying it. Nature (London). 400, 239 (1999)

    Article  ADS  Google Scholar 

  41. Mundt A.B., Kreuter A., Becher C., Leibfried D., Eschner J., Schmidt-Kaler F., Blatt R.: Coupling a single atomic quantum bit to a high finesse optical cavity. Phys. Rev. Lett. 89, 103001 (2002)

    Article  ADS  Google Scholar 

  42. Weidinger M., Varcoe B.T.H., Heerlein R., Walther H.: Trapping states in the micromaser. Phys. Rev. Lett. 82, 3795 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Fu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HF., Sun, LL., Zhang, S. et al. Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED. Quantum Inf Process 11, 431–441 (2012). https://doi.org/10.1007/s11128-011-0255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0255-9

Keywords

Navigation