Skip to main content
Log in

Effective protocol for preparation of N-photon Greenberger–Horne–Zeilinger states with conventional photon detectors

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work we show that the generating N-photon Greenberger–Horne–Zeilinger entangled state protocol proposed by Xia et al. (Appl Phys Lett 92(1–3):021127, 2008) which can be realized by a simpler optical setup and with a higher success probability. The present protocol setup involves simple linear optical elements, N single-photon superposition states and conventional photon detectors. This makes the protocol more realizable in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Gordon G., Rigolin G.: Generalized teleportation protocol. Phys. Rev. A 73(1–4), 042309 (2006)

    Article  ADS  Google Scholar 

  3. Zhang Z.J., Man Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(1–4), 022303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  4. Ekert A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Zhu A.D., Xia Y., Fan Q.B., Zhang S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73(1–4), 022338 (2006)

    Article  ADS  Google Scholar 

  6. Xia Y., Song H.S.: Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding. Phys. Lett. A 364, 117–122 (2007)

    Article  ADS  MATH  Google Scholar 

  7. Deng F.G., Long G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70(1–7), 012311 (2004)

    Article  ADS  Google Scholar 

  8. Gisin N., Massar S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153–2156 (1993)

    Article  ADS  Google Scholar 

  9. Greenberger, D.M., Horne, M.A., Zeilinger, A.: In: Kafatos, M. (ed.) Quantum Information Theory, Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, p. 69. Kluwer, Dordrecht (1989)

  10. Dür W., Cidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(1–12), 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  11. Bell J.S.: On the Einstein–Podolsky–Rosen paradox. Physics (Long Island City, N.Y.) 1, 195–200 (1964)

    Google Scholar 

  12. Dakna M., Anhut T., Opatrný T., Knöll L., Welsch D.G.: Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A 55, 3184–3194 (1997)

    Article  ADS  Google Scholar 

  13. Zheng S.B.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87(1–4), 230404 (2001)

    Article  ADS  Google Scholar 

  14. Bodoky F., Blaauboer M.: Production of multipartite entanglement for electron spins in quantum dots. Phys. Rev. A 76(1–8), 052309 (2007)

    Article  ADS  Google Scholar 

  15. Matsuo S., Ashhab S., Fujii T., Nori F., Kagai K., Hatakenaka N.: Generation of macroscopic entangled states in coupled superconducting phase qubits. J. Phys. Soc. Jpn. 76(1–6), 054802 (2007)

    Article  ADS  Google Scholar 

  16. Christ H., Cirac J.I., Giedke G.: Entanglement generation via a completely mixed nuclear spin bath. Phys. Rev. B 78(1–5), 125314 (2008)

    Article  ADS  Google Scholar 

  17. Bishop L.S., Tornberg L., Price D., Ginossar E., Nunnenkamp A., Houck A.A., Gambetta J.M., Koch J., Johansson G., Girvin S.M., Schoelkopf R.J.: Proposal for generating and detecting multi-qubit GHZ states in circuit QED. New. J. Phys. 11(1–16), 073040 (2009)

    Article  ADS  Google Scholar 

  18. Galiautdinov A., Coffey M.W., Deiotte R.: Greenberger–Horne–Zeilinger state protocols for fully connected qubit networks. Phys. Rev. A 80(1–8), 062302 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  19. Cirac J.I., Zoller P., Kimble H.J., Mabuchi H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  Google Scholar 

  20. Zou X., Pahlke K., Mathis W.: Conditional generation of the Greenberger–Horne–Zeilinger state of four distant atoms via cavity decay. Phys. Rev. A 68(1–4), 024302 (2003)

    Article  ADS  Google Scholar 

  21. Duan L.M., Kimble H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90(1–4), 253601 (2003)

    Article  ADS  Google Scholar 

  22. Su X., Tan A., Jia X., Zhang J., Xie C., Peng K.: Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables. Phys. Rev. Lett. 98(1–4), 070502 (2007)

    Article  ADS  Google Scholar 

  23. Yu C.S., Yi X.X., Song H.S., Mei D.: Robust preparation of Greenberger–Horne–Zeilinger and W states of three distant atoms. Phys. Rev. A 75(1–4), 044301 (2007)

    Article  ADS  Google Scholar 

  24. Feng X.L., Zhang Z.M., Li X.D., Li S.Q., Gong S.Q., Xu Z.Z.: Entangling distant atoms by interference of polarized photons. Phys. Rev. Lett. 90(1–4), 217902 (2003)

    Article  ADS  Google Scholar 

  25. Tashima T., Ozdemir S.K., Yamamoto T., Koashi M., Imoto N.: Elementary optical gate for expanding an entanglement web. Phys. Rev. A 77, 030302 (2008)

    Article  ADS  Google Scholar 

  26. Xia Y., Song J., Song H.S.: Linear optical protocol for preparation of N-photon Greenberger–Horne–Zeilinger state with conventional photon detectors. Appl. Phys. Lett. 92(1–3), 021127 (2008)

    Article  ADS  Google Scholar 

  27. Gleyzes S., Kuhr S., Guerlin C., Bernu J., Deléglise S., Hoff U.B., Brune M., Raimond J.M., Haroche S.: Quantum jumps of light recording the birth and death of a photon is a cavity. Nature (Lond.) 446, 297–300 (2007)

    Article  ADS  Google Scholar 

  28. Zou X.B., Li K., Guo G.C.: Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate. Phys. Rev. A 74, 044305 (2006)

    Article  ADS  Google Scholar 

  29. Benson O., Santori C., Pelton M., Yamamoto Y.: Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513 (2000)

    Article  ADS  Google Scholar 

  30. Akopian N., Lindner N.H., Poem E., Berlatzky Y., Avron J., Gershoni D., Gerardot B.D., Petroff P.M.: Entangled photon pairs from semiconductor quantum dots. Ibid 96, 130501 (2006)

    Article  Google Scholar 

  31. Kim J., Takeuchi S., Yamamoto Y., Hogue H.H.: Multiphoton detection using visible light photon counter. Appl. Phys. Lett. 74, 902 (1999)

    Article  ADS  Google Scholar 

  32. Imamoglu A.: High efficiency photon counting using stored light. Phys. Rev. Lett. 89, 163602 (2002)

    Article  ADS  Google Scholar 

  33. James D.F.V., Kwiat P.G.: Atomic-vapor-based high efficiency optical detectors with photon number resolution. Phys. Rev. Lett. 89, 183601 (2002)

    Article  ADS  Google Scholar 

  34. Nielsen, M.A., Chuang, I.L.: Quantum information, Quantum computation and quantum information, Cambridge University Press (2000)

  35. Li X.H., Deng F.G., Zhou H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91(1–3), 144101 (2008)

    ADS  Google Scholar 

  36. Xia Y., Song J., Song H.S., Zhang S.: Controlled generation of four-photon polarization-entangeld decoherence-free states with conventional photon detectors. J. Opt. Soc. Am. B 26, 129–132 (2009)

    Article  MathSciNet  Google Scholar 

  37. Song J., Xia Y., Song H.S.: Quantum nodes for W-state generation in noisy channels. Phys. Rev. A 78(1–4), 024302 (2008)

    Article  ADS  Google Scholar 

  38. Chen S., Chen Y.A., Zhao B., Yuan Z.S., Schmiedmayer J., Pan J.W.: Demonstration of a stable atom-photon entanglement source for quantum repeaters. Phys. Rev. Lett. 99(1–4), 180505 (2007)

    Article  ADS  Google Scholar 

  39. Eibl M., Kiesel N., Bourennane M., Kurtsiefer C., Weinfurter H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2004)

    Article  ADS  Google Scholar 

  40. Pan J.W., Bouwmeester D., Daniell M., Weinfurter H., Zeilinger A.: Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature (Lond.) 403, 515–519 (2000)

    Article  ADS  Google Scholar 

  41. Kim J., Takeuchi S., Yamamoto Y.: Multiphoton detection using visible light photon counter. Appl. Phys. Lett. 74, 902–904 (1999)

    Article  ADS  Google Scholar 

  42. Xia Y., Song J., Zhu A.D., Jin Z., Zhang S., Song H.S.: Preparation of a class of multiatom entangled states. J. Opt. Soc. Am. B 26, 1599 (2009)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Y., Lu, PM. & Zeng, YZ. Effective protocol for preparation of N-photon Greenberger–Horne–Zeilinger states with conventional photon detectors. Quantum Inf Process 11, 605–613 (2012). https://doi.org/10.1007/s11128-011-0271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0271-9

Keywords

Navigation