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We discuss in detail the implementation of an open-system quantum simulator with Rydberg states
of neutral atoms held in an optical lattice. Our scheme allows one to realize both coherent as well
as dissipative dynamics of complex spin models involving many-body interactions and constraints.
The central building block of the simulation scheme is constituted by a mesoscopic Rydberg gate
that permits the entanglement of several atoms in an efficient, robust and quick protocol. In
addition, optical pumping on ancillary atoms provides the dissipative ingredient for engineering
the coupling between the system and a tailored environment. As an illustration, we discuss how
the simulator enables the simulation of coherent evolution of quantum spin models such as the two-
dimensional Heisenberg model and Kitaev’s toric code, which involves four-body spin interactions.
We moreover show that in principle also the simulation of lattice fermions can be achieved. As an
example for controlled dissipative dynamics, we discuss ground state cooling of frustration-free spin
Hamiltonians.

PACS numbers: 03.67.-a, 05.30.Rt, 76.30.Mi, 32.80.Ee

I. INTRODUCTION

Simulating the evolution of many-body quantum sys-
tems on classical computers is a complex task, which is
believed to be intrinsically beyond the capabilities of clas-
sical computation [1]. While in the classical case the
number of degrees of freedom scales linearly with the
particle number the computational complexity in treat-
ing interacting many-particle quantum systems increases
drastically due to an exponential growth of the Hilbert
space dimension. One way to overcome this difficulty is
to mimic the behavior of the quantum system of interest
in an analogue physical system whose degrees of freedom
are well accessible and controllable [2, 3]. Initializing
this system in a desired quantum state and measuring
its properties after a given time is then effectively equiv-
alent to having performed a simulation of the quantum
evolution. Such quantum simulators are currently devel-
oped for several physical platforms (see [4] for a recent
overview), ranging from atomic systems [5–8], trapped
ions [9–12], implementations based on nuclear magnetic
resonance [13, 14], to photonic devices [15, 16].

One paradigmatic system for the simulation of many-
body quantum physics are gases of ultracold alkali atoms
trapped in optical lattices, where the underlying Hamil-
tonian parameters such as the hopping rate or onsite in-
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teraction strength energies of atoms can be controlled
and tuned externally (see Fig. 1) [17]. Since the first
observation of a Mott-insulator to superfluid quantum
phase transition enormous progress has been made in
controlling these systems [18], including, very recently,
the demonstration of single-site addressability [19, 20].

Analogue quantum simulators are often purpose built,
i.e., they are particularly well-suited for simulating spe-
cific classes of many-body quantum systems. While the
afore-mentioned ultracold atoms in optical lattices typ-
ically realize bosonic or fermionic Hubbard-type Hamil-
tonians with short-range interactions, trapped ions for
instance naturally offer the possibility to study interact-
ing spin models. In general, it is difficult to use analogue
quantum simulators for the study of many-body systems
with interactions, that differ considerably from the nat-
ural, physically present (one- and two-body) interactions
underlying the quantum simulator. For the simulation of
exotic models involving certain constraints and higher-
order interactions, these terms are usually created per-
turbatively. This is typically associated by fine tuning
problems, small effective energy scales and hence slow
dynamics [21].

These problems can be overcome by switching to a cir-
cuit based model in a digital, which is sketched in Fig. 1b.
Here, the state of the system is encoded in qubits. The
Hamiltonian time evolution is effectively created by a se-
quences of quantum gates which act on these qubits, i.e.
concatenating certain elementary gates will amount to
the action of an effective time-evolution operator whose
structure can be tailored with great flexibility. It has
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FIG. 1: Analogue vs. digital quantum simulator. a: In an
analogue simulator the interactions of the simulated model are
typically closely related to the physical interactions that un-
derlie the system which implements the simulator. In the case
of cold atoms these are for example optical lattice potentials
or short-ranged interatomic interactions, which can be used
to simulate Bose and Fermi-Hubbard type Hamiltonians. b:
In the digital case the Hamiltonian evolution is implemented
by sequences of quantum gates acting on arrays of qubits,
which are e.g. encoded internal states of atoms. The simu-
lated Hamiltonian Heff can be vastly different from the inter-
actions governing the underlying physical system. It allows
for example the implementation of exotic many-body Hamil-
tonians involving (higher-order) n-body interactions, which
are very different to those normally encountered in ultracold
atomic systems.

been shown that, provided a universal set of quantum
gates is available, such digital quantum simulator can be
used to simulate the dynamics of any many-body Hamil-
tonian with short-range interactions efficiently [3]. Fur-
thermore it is possible to also efficiently simulate general
(Markovian) dissipative dynamics, by including dissipa-
tive reset operations on ancillary qubits [22–24]. Hereby,
the engineering of a controlled coupling of the system to
an artificially tailored environment offers the possibility
of realizing dynamics for the dissipative preparation of
entangled states and quantum phases [25], and closely
related, quantum computation based on dissipation [24].
Recently, we have developed a physical implementation
of an open-system quantum simulator based on neutral
atoms arranged in an optical lattice [26]. Alternative
methods for the simulation of spin systems have recently
been discussed: the ground state cooling for the toric
code and a non-abelian topological phase using a single
control atom moving through the lattice and interacting
via two-qubit gates with the system spins has been pro-
posed [27]. This method requires after an initial measure-
ment procedure a second correction step, which removes
the entropy from the system. In addition, the simula-
tion of the coherent time evolution and the preparation
of thermal states for the toric code using a stroboscopic
method has been discussed by Herdman et al. [28]. On
the experimental side minimal instances of spin plaque-
tte models have recently been implemented with trapped
ions [12] and photons [29, 30].
In this work we review and extend such simulation ar-

chitecture combining the coherent time evolution as well

as dissipative terms for interacting spin systems, and in
addition provide novel results on the simulation of lattice
fermions. The central building block of our simulator is
a mesoscopic Rydberg gate which relies on electromag-
netically induced transparency (EIT) and the strong and
long-ranged interaction of neutral atoms excited to Ryd-
berg states [31]. We furthermore show that by including
optical pumping on ancillary atoms as a dissipative ingre-
dient enables the implementation of open-system many-
body dynamics. This dissipative dynamics can be used to
perform efficient ground state cooling for a large class of
spin models. In general one can expect that the cooling
of any frustration-free Hamiltonian can be achieved.

II. SIMULATION OF COHERENT DYNAMICS

A. Setup and general scheme

In the specific setup we have in mind ultracold atoms
are trapped in a deep optical lattice in a Mott-insulator
state with a single atom per site. These atoms are used
to encode the qubits of our digital simulator in differ-
ent electronic ground states. The spacing between the
lattice sites can be on the order of up to a few mi-
crometers. Experimentally, lattices which grant single
site laser addressability have been demonstrated in Refs.
[19, 20, 32, 33].
As sketched in Fig.1b the temporal evolution in a

digital quantum simulator is achieved by concatenating
quantum gates. In practice such gates are realized by
carefully timed laser pulses and their interplay with state
dependent interactions of the trapped atoms. The gen-
eral aim is to simulate Hamiltonians of the form

H =
∑

k

hk. (1)

Here the hk are quasi-local Hamiltonians that govern the
interaction of degrees of freedom located in the vicinity
of the k-th lattice site. An appropriate sequence of gates
will thus implement the time-evolution operator

U(τ) = exp

[

−iτ/~
∑

k

hk

]

. (2)

Note that the simulation time τ is in general different
from the real-time t. While the idea is simple the prac-
tical implementation of such a scheme bears difficulties.
Owed to the finite range of physical interactions, gate

operations that can be efficiently implemented are usu-
ally quasi-local. The time-evolution operator U(τ), how-
ever, contains highly non-local terms which in case of
non-commuting hk cannot simply be decomposed into
products of local ones. In practise one therefore tries
to approximate U(τ) by a sequence of quasi-local gates.
Such approximation scheme is provided by the Suzuki-
Trotter decomposition [34]. Here one approximately im-
plements the global time-evolution operator over a time
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step of length τ by decomposing it into a product of time
evolution operators, which correspond to the individual,
quasi-local terms hk of the Hamiltonian:

U(τ) ≈
∏

k

exp [−i(τ/~)hk] . (3)

Non-commutativity of terms hk leads to errors, which
are bounded and can be controlled by the length of the
time-step and reduced by choosing more sophisticated
expansion schemes that are a generalization of eq. (3)
(see, e.g., Ref. [34]).
While in theory any universal set of quantum gates

allows the efficient approximation of arbitrary unitaries
and therefore the dynamics of arbitrary Hamiltonians
with short-range interactions, the experimental realiz-
ability strongly demands for an implementation of the
time-evolution with few and robust gates. While single-
qubit gates are usually straight-forwardly implemented
the challenge lies on creating two-qubit or even many-
qubit gates as depicted in Fig. 1b. This key requirement
is met by a mesoscopic Rydberg gate which is detailed in
the next subsection. It allows the implementation of an
entangling multi-qubit gate on a microsecond timescale
and with only three laser pulses, independently on the
number of atoms involved in the multi-qubit gate. It
therefore promises the flexibility, speed and robustness
that is necessary for an efficient digital implementation
of quantum spin models with exotic interactions.

B. The mesoscopic Rydberg gate

The purpose of this section is to review the basic prop-
erties of the mesoscopic Rydberg gate presented in [31],
which constitutes the central building block of our en-
visioned digital quantum simulator. The mechanism un-
derlying the gate operation makes use of a two-photon in-
terference phenomenon known as Electromagnetically In-
duced Transparency (EIT) [35]. The general setup for the

Ensemble atom

Control atom

Laser

Rydberg

interaction

FIG. 2: Setup for the mesoscopic quantum gate. A single
control atom can be addressed independently of N ensemble
atoms. Laser excitations induce a Rydberg interaction be-
tween control and ensemble atoms, leading to the realization
of a mesoscopic quantum gate.

implementation of the quantum gate is shown in Fig. 2.
We consider a single control atom andN ensemble atoms.

For our setup we assume single-site addressability as it
has recently been demonstrated by several experimental
groups [19, 20, 32, 33]. The logical (qubit) states of the
control atom are two hyperfine ground states denoted by
|0〉 and |1〉. The logical states of the ensemble atoms are
named |A〉 and |B〉. In spite of the different labeling it is
in practice not necessary to distinguish between the con-
trol and the ensemble atoms - an example for this will be
given in Sec. II C 1.
The mesoscopic Rydberg gate uses state-dependent in-

teractions between Rydberg atoms [36–38] to realize a
Controlled-NOTN (CNOTN ) gate, which is defined by

G = |0〉〈0|c
N
⊗
i=1

1i + |1〉〈1|c
N
⊗
i=1

σx
i , (4)

where – depending on the state of the control qubit – the
state of all N target qubits is left unchanged or flipped.
Here, σx

i |A〉i = |B〉i and σx
i |B〉i = |A〉i.

To illustrate the underlying mechanism we introduce
additional internal levels in both control and ensemble
atoms which will be used to physically implement the
gate operation (see Fig. 3): The control atom has an
auxiliary Rydberg state |r〉 that can be coupled to the
hyperfine state |1〉 by a laser. In the ensemble atoms we

FIG. 3: Atomic level structure and external laser couplings for
the mesoscopic gate. The states |1〉 and |r〉 in the control atom
are coupled by a laser with Rabi frequency Ωr. The weak laser
fields Ωp(t) drives a Raman transitions from |A〉 to |B〉 in the
ensemble atoms. (a) For the control atom in |0〉 the Raman
lasers and the strong coupling laser (Rabi frequency Ωc), cou-
pling |P 〉 to the |R〉 state, are in two-photon resonance. (b)
For the control atom in |r〉 the Rydberg interaction shifts the
|R〉 level away from the two-photon resonance.

employ two additional levels. First, there is a coupling
characterized by a time-dependent Rabi frequency Ωp(t)
between the hyperfine ground states |A〉 and |B〉 and
an intermediate non-Rydberg |P 〉 level, which still has
a low principle quantum number such that interactions
with the |r〉 level of the control atom are negligible. Fur-
thermore, we make use of a Rydberg state |R〉 in each
ensemble atom that is coupled to the intermediate |P 〉
state with a laser of Rabi frequency Ωc. The external
laser fields are chosen such that there is a large detuning
∆ from the |P 〉 level, such that this state is only virtually
populated. However, the hyperfine ground states and the
Rydberg state are in two-photon resonance.
With this setup the gate operation is performed by a

sequence of three laser pulses that is depicted in Fig. 4:
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FIG. 4: Laser pulse sequence for the mesoscopic gate consist-
ing of an initial π pulse on the control atom, an adiabatic
Raman transfer in the ensemble atoms, and a second π pulse
on the control atom.

We start by applying a π pulse on the control atom which
transforms its qubit state α|0〉+ β|1〉 to α|0〉+ iβ|r〉. In
the next step we perform a conditional adiabatic Raman
transfer in the ensemble atoms from |A〉 to |B〉 via the
intermediate |P 〉 state. To this end we apply a smoothly
varying pulse profile Ωp(t), which is chosen such that it
realizes an effective π-pulse between |A〉 and |B〉. Finally,
a second π-pulse is applied to the control atom.
In the following we study the consequences of this pulse

sequence on the ensemble atoms in the two cases in which
the control atom is in |0〉 or |r〉, respectively. The full dy-
namics then follows by taking the superposition accord-
ing to the coefficients α and β. Let us for simplicity first
assume that the ensemble atoms do not interact with
each other; consequences of non-vanishing interactions
will be discussed later. Then, the dynamics of the en-
semble atoms reduces to the product of the independent
evolution of a single ensemble atom. For a large detun-
ing ∆ we may adiabatically eliminate the |P 〉 level and
obtain the effective Hamiltonian

Heff =
~Ω2

c

4∆

[

x2|+〉〈+|+ (1 + V )|R〉〈R|+ x (|+〉〈R|+ h.c.)
]

(5)

Here, |+〉 = (|A〉 + |B〉)/
√
2 is the symmetric superposi-

tion of the two hyperfine ground states and x =
√
2Ωp/Ωc

defines the relative strength of the probe laser Ωp to the
coupling laser Ωc. Note that during the second laser
pulse (Raman transfer) Ωc and therefore also x are time-
dependent functions. The interaction term V is in fact
state-dependent and accounts for the state of the con-
trol atom: In an ideal situation we have V = 0 for the
control atom in |0〉 (see Fig. 3a) while for the control
atom in |r〉 (see Fig. 3b) we have a dominant Ryd-
berg interaction, i.e., V = ∞. The antisymmetric state
|−〉 = (|A〉 − |B〉)/

√
2 is a zero energy eigenstate of the

Hamiltonian. This dark state will thus be unaffected by
the dynamics.
Let us now look at the situation in which the control

atom is in state |0〉 (Fig. 3a) and all ensemble atoms
are in |A〉: Here the first and the last π-pulse shown in
Fig. 4 have no effect. We have V = 0 and we find that
Hamiltonian (5) possesses in addition to |−〉 a second
zero energy dark state,

|d〉 = (1 + x2)−1/2[|+〉 − x |R〉], (6)

which for t = 0 corresponds to the |+〉 state. The only

non-zero eigenstate has the energy E2 =
~Ω2

c

4∆

(

1 + x2
)

and is thus energetically separated from the dark state
manifold. During the Raman pulse (see Fig. 4) the sys-
tem will adiabatically follow the zero energy dark states
for weak coupling lasers with x ≪ 1 and smooth laser
pulse shapes Ωp(t). Thus it will follow the dark state

|d̄〉 = (1/
√
2) [|−〉+ |d〉] which starts and ends in |A〉.

The ensemble is hence effectively transparent for the Ra-
man laser. Imperfections of this adiabatic passage arise
from Landau-Zener transitions to the non-zero energy
eigenstate [31].
In the case of the control atom starting in |1〉 the first

π-pulse will effectuate a transfer to the Rydberg state |r〉
and the strong interaction between the Rydberg levels V
will change the outcome of the Raman laser sequence.
For the sake of simplicity we assume V = ∞. Here the
Rydberg levels of the ensemble atoms will not take part
in the dynamics as they are far off-resonant (see Fig. 3b).
Here the time evolution of the ensemble atoms follows the
HamiltonianH = ~Ω2

c/(4∆)x2|+〉〈+|. Then, by choosing
the pulse shape of Ωp(t) (x ≡ x(t)) such that

∫

x2(t)dt =
π the system will undergo the transformation (or Raman
transfer)

|−〉 → |−〉 , |+〉 → −|+〉. (7)

Expressing this transformation in the original states |A〉
and |B〉 results in

|A〉 → −|B〉 , |B〉 → −|A〉, (8)

which is the desired operation up to a trivial phase factor,
which can be corrected by choosing suitable phases of the
laser fields. Finally, the second π-pulse de-excites the
control atom.
Combining the two scenarios outlined above estab-

lishes a way to control a NOT operation on the qubit
states of the ensemble atoms conditioned on the state of
the control atom, effectively realizing the CNOTN gate
(4). In the next subsections we will make extensive use of
this gate when implementing digital quantum simulation
schemes for spin models (with many-body interactions).
Before we proceed, however, we want to briefly dis-

cuss issues relevant to the experimental implementation.
First of all, we have neglected in our considerations the
interaction among ensemble atoms. This is in general un-
justified since the ensemble atoms are in the course of the
gate sequence excited to Rydberg states which strongly
interact. In a situation in which the control atom is ini-
tially in |1〉 and hence is excited to a Rydberg state this
does not constitute a major problem since the Rydberg
state of the ensemble atoms is shifted far out of resonance
and therefore is not excited. In the opposite situation
(control atom in state |0〉) the ensemble-ensemble inter-
action is however expected to modify the working of the
gate considerably. Indeed, one finds that in this case the
state of the ensemble atoms can no longer be described
by a tensor product of dark states [31]. Instead one finds
that the initial state, e.g. |AN 〉 is written as a sum of
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dark and ”grey” states which acquire a dynamical phase
shift (with respect to the dark states) that in the limit
of infinite ensemble-ensemble interaction is proportional
to N max[x2(t)] [31]. In order to keep the fidelity of the
gate high this shift has to be kept small. This means the
higher the number of qubits that are to be entangled,
the smaller the ratio x =

√
2Ωp/Ωc. However, at the

same time the Raman transfer has to be carried out at a
time much shorter than the lifetime of the atomic Ryd-
berg states, that is typically on the order of 50µs. This
requires a very strong coupling and also strong Raman
lasers. One can show that the gate as presented here
can implement an entangling operation on a timescale of
∼ 1µs. In Ref. [31] we have explicitly shown that fideli-
ties > 99% can be achieved for N = 3 ensemble atoms
located at a distance ∼ 2µm from the control atom. The
main limitation to the fidelity is given by the available
laser power. In order to achieve high fidelities also for
a larger number of ensemble atoms one has to ensure√
Nx ≪ 1. This choice suppresses deteriorating effects

caused by the interaction among ensemble atoms excited
to Rydberg states [39, 40]. Further consequence that
arises from gate imperfections on the desired quantum
simulation are analyzed towards the end of Sec. II C 1.

C. Digital simulation of spins and fermions

In the following, we will use the mesoscopic Rydberg
gate as building block for the digital quantum simulation
[26] of spin Hamiltonians. We will at first discuss Kitaev’s
toric code whose Hamiltonian contains many-body inter-
action. Despite the seemingly complicated structure this
model is rather simple to implement as its Hamiltonian
contains no non-commuting parts. The second example
concerns the two-dimensional Heisenberg model and as a
third example we discuss the digital simulation of lattice
fermions. The latter can be mapped onto an effective
spin Hamiltonian with six-body interaction terms.

1. Kitaev’s toric code

In Kitaev’s toric code model, spins are located on the
links of a two-dimensional square lattice and interact via
four-body interactions [41]. This model is paradigmatic
for a whole class of so-called stabilizer codes [42, 43]. Its
Hamiltonian is given by

H = −E0





∑

i

A(i)
p +

∑

j

B(j)
s



 , (9)

with the “plaquette terms” A
(j)
p = σxσxσxσx being the

product of four Pauli spin matrices and “star” terms

B
(j)
s = σzσzσzσz defined in an analogous manner, see

Fig. 5. In this notation the index j labels the plaque-
ttes/stars and the four σ-operators act on the spins lo-
cated at the corners of the corresponding square (see

FIG. 5: Lattice model for Kitaev’s toric code, consisting of
two sublattices involving plaquette operators Ap and star
terms Bs.

Fig. 5). Besides its initially envisioned use as a quan-
tum memory, this model has recently received consid-
erable attention in the context of quantum simulation
[27, 29, 44]. The operators Ap and Bs are stabilizer op-
erators with eigenvalues ±1. The model can be solved
exactly, as all plaquette and star terms of the Hamilto-
nian mutually commute. The global ground state |ψ〉 is
at the same time the ground state of each of the operators
Ap and Bs:

Ap|ψ〉 = |ψ〉
Bs|ψ〉 = |ψ〉 (10)

for all plaquettes and stars, respectively. For periodic
boundary conditions on a torus the stabilizers satisfy the
relations

∏

pAp = 1 and
∏

sBs = 1. For a system of
N atoms there are N − 2 independent stabilizers. Con-
sequently, the ground state manifold of the system will
be four-fold degenerate. For an experimentally more ac-
cessible situation of flat two-dimensional lattice struc-
tures, the number of holes in the 2D lattice determines
the ground state degeneracy.
Excitations of the toric code Hamiltonian can be of two

types: violations of the stabilizer constraints of either
Ap operators (“magnetic charges”) or Bp terms (“elec-
tric charges”). They have an energy gap of 4E0 as every
violation will affect two stars or plaquettes, respectively.
In the following we will illustrate these excitations for the
magnetic charges, but due to the symmetry of the Hamil-
tonian the situation is identical for the electric charges.
Flipping a single spin will create two magnetic charges

located on adjacent plaquettes, see Fig. 6. By flipping
a different spin on one of the adjacent plaquettes the
excitations are effectively moved. The excitations are
no longer quasi-local, but must be described by a string
operator involving the path along which the charge has
been moved. By flipping several spins we also may move
a magnetic charge around an electric charge; due to the
non-commutativity of σx and σz the state will eventually
pick up a phase of π. This behavior shows that the quasi-
particles describing magnetic or electric charges neither
have bosonic nor fermionic character as in both cases one
would expect to recover the identity once the particle had
been returned to its initial position. Hence, one calls such
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particles with exotic statistics “anyons” related to their
potential to pick up “any” phase under particle exchange.
While the realizations of systems exhibiting anyonic ex-
citations is interesting in itself, the anyon dynamics has
direct consequences on the ground state cooling discussed
in Sec. III A.

FIG. 6: Excitations in the toric code. (a) Flipping the spin
indicated by the arrow will create two magnetic charges on
the adjacent plaquettes. (b) Charges can be moved around by
flipping further spins on the plaquettes containing the charges.
The string operator characterizing the non-local excitation is
shown as a solid line. (c) Moving a magnetic charge around
an electric charge.

Since the stabilizer operatorsAp and Bs mutually com-
mute no Trotter errors occur and the time-evolution op-
erator for a time step τ is exactly given by

U = exp(−iHτ/~) =
∏

ps

exp(iE0Apτ/~) exp(iE0Bsτ/~),

(11)
and we need to focus only on the case of a single pla-
quette or star. The extension to the entire lattice then
follows naturally from iterating over all plaquettes and
stars. Note that it is possible to parallelize many of these
operations by partitioning the system into a few sublat-
tices of piecewise independent atoms.
During each timestep of the digital simulation we want

the dynamics of the plaquette to be governed by the time
evolution operator Up = exp(iE0Apt/~). In the regime
of single site addressability, selecting a single plaquette is
achieved by focusing the laser pulses which are required
for the gate only on the atoms participating in the dy-
namics of this plaquette. In Ref. [26] a simulation scheme
was suggested where additional ancillary “control” atoms
were used to effectively mediate four-body interactions
between the four plaquette spins. Here, we propose an al-
ternative approach which works without ancillary atoms.
Instead one of the four plaquette atoms (as shown in Fig.
5) will take the role of the control atom c. This situation
requires a focussing of the Raman and control lasers ex-
clusively on the remaining three atoms of the plaquette.
This can either be achieved by an appropriate shaping
of these laser beams or alternatively by addressing the
three atoms sequentially between the excitation and de-
excitation of the control atom. We can then decompose
Up as

Up = GUx
c (φ)G, (12)

where G describes the mesoscopic Rydberg gate,

G = |0〉〈0|c ⊗
i6=c

1i + |1〉〈1|c ⊗
i6=c

σx
i (13)

and the single qubit rotation Ux
c (φ) = exp(iφσx

c ) imprints
a phase of φ = E0t/~ onto the control atom. The sim-
ulation of the star terms Bs follows analogously by per-
forming global π/2 rotation that interchange σx and σz .
More intuitively, the gate sequence that creates the effec-
tive time-evolution under the Hamiltonian −EAp works
as follows: The essential step is to realize that the inter-
action ’sees’ only whether a plaquette state has a positive
or negative eigenvalue with respect to the operator Ap.
The actual configuration of the spins is not important.
In the first step of the gate sequence (12) the informa-
tion of the state of three plaquette atoms is mapped on
the control atom. Now the control atom is manipulated,
i.e. a state-dependent rotation is carried out and the ini-
tial mapping is reversed. The timescale of this process
is essentially set by the speed of the mesoscopic Rydberg
gate as single qubit rotations can be carried out quickly
and reliably. Using experimentally realistic parameters,
we find an effective interaction strength that can be on
the order of several hundred kHz [26].
Let us now briefly investigate the effects of imperfec-

tions on the quantum simulator. As mentioned above, a
possible error source is the residual Rydberg interaction
between the ensemble atoms during the mesoscopic gate,
see Ref. [31] for a detailed discussion. In the presence of
such a coherent error we can write the mesoscopic gate
as

G′ = |0〉〈0|c ⊗ eiφQ + |1〉〈1|c ⊗
i6=c

σx
i . (14)

Here, we have factored out the dependence on the im-
printed phase φ to allow for a consistent expansion. The
perfect gate G then follows in the limit Q→ 0, with the
Hermitian operator Q acting on the entire plaquette ex-
cept for the control atom. Expanding U ′

p = G′Ux
c (φ)G

′

up to first order in φ we obtain

U ′
p = 1 + 2iφQ|0〉〈0|c + iφAp +O(φ2), (15)

which corresponds to the coherent dynamics under the
modified Hamiltonian H ′ = H + (1c − σz

c )Q. Conse-
quently, imperfections can be naturally integrated into
the framework of this digital simulator with incoherent
errors leading essentially to a finite temperature for the
simulated system [45].

2. Heisenberg model

Let us now discuss a scheme for the simulation of coher-
ent dynamics according to the Heisenberg Hamiltonian

H = −1

2

∑

i,j

(

Jxσ
x
i σ

x
j + Jyσ

y
i σ

y
j + Jzσ

z
i σ

z
j

)

+ h
∑

i

σz
i

(16)
Here, Jx (Jy, Jz) denotes the coupling strength of x-type
(y−, z−type) spin-spin interactions between neighbour-
ing spins, and h denotes the strength of a single particle
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term playing the role of an effective magnetic field in z-
direction acting on all spins. In contrast to the toric code
Hamiltonian discussed above, here not all terms in the
Hamiltonian commute. Thus the coherent time evolu-
tion has to be realized in a Trotter expansion with small
time steps to keep Trotter errors from non-commuting
terms small.

Simulation of the dynamics due to the magnetic field
term for a small time step τ is straightforward as
exp(−ihτ∑i σ

z
i ) can be implemented by a global rota-

tion of all spins, realized e.g. by a corresponding AC
Stark shift applied to all atoms. The pairwise interac-
tion terms can be built up from two-atom Rydberg gates
G and single-qubit rotations as follows. A small time
step exp(iJxτσ

x
i σ

x
j /2) ≡ exp(iθσx

i σ
x
j /2) of pairwise x-

type interactions between neighbouring spins i and j can
be written as

exp(iθσx
i σ

x
j /2)

= exp(−iπσy
i /4) exp(iθσ

z
i σ

x
j /2) exp(iπσ

y
i /2)

= exp(−iπσy
i /4) exp(iθσ

x
j /2)

exp(−iθσx
j (1− σz

i )/2) exp(iπσ
y
i /4)

= exp(−iπσy
i /4) exp(iθσ

x
j /2)

[

|0〉〈0|i ⊗ 1j + |1〉〈1|i ⊗ exp(−iθσx
j /2)

]

exp(iπσy
i /4)

(17)

Up to single-qubit rotations, this corresponds to an en-
tangling two-qubit Rydberg gate (term in square brack-
ets), where atom i takes the role of the control qubit, and
atom j undergoes a conditional spin flip. For θ = π this
spin flip takes place with unit probability and the opera-
tion reduces to the gate (4) discussed above. To minimize
Trotter errors in the simulation, small values θ ≪ 1 are
required. This can be readily achieved by adjusting the
pulse length of the second pulse in the pulse sequence
of the gate. For shorter times and / or smaller inten-
sities of this pulse, the Raman transfer between logical
states |A〉j and |B〉j of the target atom corresponds to
only a partial population transfer, and thereby directly
realizes the entangling operation in the last line of (17).
The implementation of y and z interaction terms in (16)
can be done by combining the described procedure with
single-qubit rotations on both atoms. We note that for
a fixed set of parameters in the Hamiltonian (16) it can
be beneficial to seek shorter decompositions of the evo-
lution operator on each pair of sites to reduce the simu-
lation cost in terms of the required two-qubit entangling
gates. Note that in contrast to previous proposals for the
quantum simulation of the Heisenberg model with cold
atoms [46, 47], the discussed implementation with Ryd-
berg atoms can acheive energy scales up to Jx ∼ 100KHz,
which are limited by the available laser power and not by
the microscopic coupling constants.

3. Fermi-Hubbard model in two dimensions

The Heisenberg model can also be seen as the limiting
case of a more general Hamiltonian that also involves the
motion of the particles, which is the fermionic version of
the Hubbard model [48]. Currently, there is great interest
in the quantum simulation of the Fermi-Hubbard model
in two-dimensional systems because of the expected re-
lations to high-temperature superconductivity. Most ap-
proaches are centered around an analog simulation using
ultracold fermionic atoms in optical lattices [7, 8], but the
experimental requirements for reaching the temperature
regime of magnetic ordering or even the regime of d-wave
superfluidity remain very challenging. Here, we outline
a different approach where lattice fermions are mapped
on a spin Hamiltonian with many-body interactions that
can be implemented using our digital quantum simulator
[49].
The Hamiltonian describing the single-band Fermi-

Hubbard model for spin 1/2 particles on a square lattice
is given by

H = −t
∑

<ij>σ

c†iσcjσ + U
∑

i

ni↑ni↓, (18)

where c†iσ creates a fermion at site i with spin σ and

niσ = c†iσciσ is the corresponding number operator. The
parameter t describes a hopping of the fermions to ad-
jacent sites, while U accounts for the interactions of two
fermions on the same lattice site. The Heisenberg model
discussed above follows in the limit U → ∞ at half filling.
Since we are dealing with fermionic particles, the dig-

ital quantum simulator needs to incorporate fermionic
statistics. So far, we have discussed how to create a uni-
versal quantum simulator for spin interactions. While
spin 1/2 particles have the correct fermionic anticommu-
tator

{

σ−
i , σ

+
i

}

= 1i on-site, they have bosonic statistics

[σ−
i , σ

+
j ] = 0 off-site. To overcome this, one has to apply

a Jordan-Wigner transformation, which has the form

ci =
i−1
⊗
j=1

σz
j σ

−
i (19)

c†i =
i−1
⊗
j=1

σz
j σ

+
i (20)

c†i ci =
1

2
(1− σz

i ). (21)

Here, we have to introduce an enumeration of the sites
of the two-dimensional lattice. This can be done, e.g, by
starting in the lower left corner, moving to the lower right
corner, go up one site, move to the left, and so on until the
entire lattice has been scanned over. Then, the presence
of a fermion on site i corresponds to the presence of a
down spin. Conversely, an empty site in the fermionic
picture translates into a spin up particle. Note that for
spin 1/2 fermions, one has to replace each fermion by two
spin 1/2 particles to encode all four possible combinations
on each site.
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Let us now look at how the operators in the Fermi-
Hubbard Hamiltonian transform. Clearly, the on-site in-
teraction results in interactions of the form (1− σz

i↑)(1−
σz
i↓). On the other hand, the hopping terms become

c†iσci+kσ = σx
iσS

σ
i,kσ

x
i+kσ + σy

iσS
σ
i,kσ

y
i+kσ . (22)

with the string operator Sσ
i,k = ⊗i+k−1

j=i+1 σ
z
jσ acting on

the sites between i and i + k. If we consider hopping
in the horizontal direction, we see that within our enu-
meration scheme the string operators drop out and the
resulting spin operators remain local. However, this is
not true in the vertical direction. There, we are left with
non-vanishing string operators that run across the entire
width of the lattice and consequently describe a highly
nonlocal interaction.
This obstacle can be overcome by introducing auxiliary

degrees of freedom as shown in Ref. [50]. Such degrees
of freedom are constituted by a fermion field di that is

prepared in the ground state of the Hamiltonian

Haux = −V
∑

{i,j}σ

Pi′,j′Pj′+1,i′−1, (23)

with the mutually commuting projectors Pi′,j′ = (di′σ +

d†i′σ)(dj′σ − d†j′σ) and {i′, j′} partitioning the lattice into
directed graphs, see Fig. 7. The ground state of Haux is
given by the condition Pi′,j′ = 1 for all i′, j′. By replacing
the vertical hoppings in the Fermi-Hubbard Hamiltonian
by

c†iσci+kσ 7→ c†iσci+kσPi′,i′+k (24)

it is possible to turn them into local spin operators when
the Jordan-Wigner transformation is applied. The price
one has to pay for this decoupling is that the resulting
Hamiltonian contains six-body interactions [50]. Includ-
ing all degrees of freedom, the Hamiltonian is of the form

H =− t
∑

i,j,σ

(

σx
i,j,σσ

x
i+1,j,σ + σy

i,j,σσ
y
i+1,j,σ

)

σz
i′,j′,σ + t

∑

i,j,σ

(

σx
2i,j,σσ

x
2i,j+1,σ + σy

2i,j,σσ
y
2i,j+1,σ

)

(−1)j+1σy
2i′,j′,σσ

x
2i′,j′+1,σ

+ t
∑

i,j,σ

(

σx
2i+1,j,σσ

x
2i+1,j+1,σ + σy

2i+1,j,σσ
y
2i+1,j+1,σ

)

(−1)j+1σx
2i′+1,j′,σσ

y
2i′+1,j′+1,σ +

U

4

∑

i,j

(1− σz
i,j,↑)(1 − σz

i,j,↓)

+ V
∑

i,j,σ

σz
2i,2j,σσ

z
2i+1,2j+1,σσ

x
2i′,2j′,σσ

x
2i′+1,2j′,σσ

x
2i′+1,2j′,σσ

x
2i′+1,2j′+1,σ

+ V
∑

i,j,σ

σz
2i+1,2j+1,σσ

z
2i,2j+2,σσ

x
2i′,2j′+1,σσ

x
2i′+1,2j′+1,σσ

x
2i′,2j′+2,σσ

x
2i′+1,2j′+2,σ

+ V
∑

i,j,σ

σz
2i+1,2j,σσ

z
2i+2,2j+1,σσ

y
2i′+1,2j′,σσ

y
2i′+2,2j′,σσ

y
2i′+1,2j′+1,σσ

y
2i′+2,2j′+1,σ

+ V
∑

i,j,σ

σz
2i+1,2j+2,σσ

z
2i+2,2j+1,σσ

y
2i′+1,2j′+1,σσ

y
2i′+2,2j′+1,σσ

y
2i′+1,2j′+2,σσ

y
2i′+2,2j′+2,σ, (25)

where we have moved to a two-dimensional notation for
the lattice.

For an experimental realization one needs to imple-
ment four spin 1/2 particles on every site of the orig-
inal fermionic model. This could be realized either by
stacking up the square lattice in four layers or by being
able to address all particles per site individually, e.g.,
by choosing different hyperfine states. Note that the
six-body interactions can again be mapped on the fa-
miliar

∏

i σ
x
i form by applying local π/2 rotations on

the spins involving σz
i . As an example, let us demon-

strate the digital simulation of the Fermion hopping term

−t(c1,1↑c†2,1↑ + h.c.), which transform into

h1,2 = −t
(

σx
1,1,↑σ

x
2,1,↑ + σy

1,1,σσ
y
2,1,↑

)

σz
1′,1′,↑

= −tσx
1,1,↑σ

x
2,1,↑σ

z
1′,1′,↑ − tσy

1,1,↑σ
y
2,1,↑σ

z
1′,1′,↑

= h1 + h2. (26)

The two terms h1 and h2 can be implemented sequen-
tially according to the Suzuki-Trotter formula Eq. (3).
The time-evolution according to h1 can be simulated by
the gate sequence U1 = UH

1′,1′,↑GU
x
c (φ)GU

H
1′,1′,↑, where

UH is the Hadamard gate, which interchanges σx and
σz and the phase shift φ = tτ/~ relates the duration of
each timestep τ to the coupling constant t. The term h2
can be implemented analogously, by including local gates
interchanging σx and σy on the sites 1, 1, ↑ and 2, 1, ↑.
While the experimental requirements for the imple-

mentations of non-commuting three-body and six-body
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interaction terms is certainly challenging, this example
illustrates the principle power of a digital quantum sim-
ulator. By using specially tailored many-body gates it
might be possible to group several terms of the Hamil-
tonian together and thus reduce the number of required
gate operations.

III. COOLING INTO MANY-BODY GROUND

STATES

So far, we have discussed the coherent simulation of
spin and fermion lattice models. What we have left aside
is the preparation of the initial state for this simulated
dynamics. Typically, one is not interested in dynamics
of arbitrary initial states, but rather in the behavior of a
certain class of states, often those with low energy with
respect to the simulated Hamiltonian. One possibility
would be to adiabatically follow the ground state from
an experimentally accessible initial state; for example, in
analog simulation of lattice models with cold atoms, the
system is first cooled to quantum degeneracy, with the
lattice being ramped up adiabatically afterwards. Here,
we follow a different route: we engineer the interaction
with a dissipative environment in such a way that the
resulting dynamics cools the system into the many-body
ground state of the Hamiltonian of interest [24–28, 51].
With such a dissipative element the dynamics is no longer
unitary, but can be described by a quantum master equa-
tion for the system density operator ρ, which is of the
form

d

dt
ρ = − i

~
[H, ρ] +

∑

i

γi

(

ciρc
†
i −

1

2

{

c†ici, ρ
}

)

, (27)

and where the rates γi control the strength of the dissi-
pation. The goal is then to engineer the jump operators

1 1’ 2 2’ 3 3’ 4 4’

5 5’6 6’7 7’8 8’

9 9’ 10 10’ 11 11’ 12 12’

13 13’14 14’15 15’16’16

FIG. 7: Lattice model for the Fermi-Hubbard model for a sin-
gle spin degree of freedom. Sites corresponding to the original
fermions are colored in red, while the sites corresponding to
the auxiliary fermion field are colored in blue. The arrows in-
dicate the graphs along which the projectors Pi,j are defined.

FIG. 8: Setup for the cooling of the toric code. Interstitial
control atoms are shown in red, with their internal level struc-
ture allowing optical pumping into the |0〉 state.

ci in such a way that the only stationary states of the
master equation correspond to the groun dstates of the
Hamiltonian of interest. Note that this Hamiltonian does
not necessarily correspond to the Hamiltonian H gener-
ating the coherent dynamics in the master equation. In
fact, we will study the case of purely dissipative dynamics
with H = 0 in the following.

A. Kitaev’s toric code

Let us focus again on the toric code whose coherent
simulation was already discussed Sec. II C 1. In contrast
to the implementation of the coherent dynamics we will
no longer use one of the atoms of each plaquette or star
as the control particle. Instead, we add control atoms to
the interstitial spaces of our lattice as shown in Fig. 8.
In our cooling scheme these control atoms will be opti-
cally pumped, and therefore provide the coupling to the
dissipative environment needed for our quantum state
preparation.
As demonstrated in Sec. II C 1 the global ground state

of the toric code is at the same time the ground state
of each plaquette or star. Kitaev’s toric code falls into
the class of frustration-free Hamiltonians, where the en-
ergy of each term can be minimized independently. We
can therefore perform the cooling to the ground state
of each plaquette or star. As in the coherent case we
first focus on the case of a single plaquette Ap. Here
the local Hamiltonian is given by hp = −E0Ap with the
spectrum of Ap constituted by two eightfold degenerate
sectors with eigenvalues +1 and −1. It is therefore con-
venient to denote the states by |±1, λ〉, where ±1 refers
to the eigenvalue of Ap and λ labels the different states
within the degenerate manifold. The preparation of the
ground state sector can be achieved by pumping the pla-
quette into any superposition or mixture of +1 eigen-
states. This is realized by choosing a four-body quantum
jump operator of the form

cp =
1

2
σz
i (1−Ap) , (28)

where σz
i acts on an arbitrary spin i of the four plaquette

spins. To understand the action of this jump operator,



10

it is instructive to split it into two parts. First, the “in-
terrogation” part 1/2(1−Ap) checks whether the system
is already in the correct eigenstate. Applied to any +1
eigenstate (Ap = +1) the jump operator vanishes and
the ground state manifold is left unchanged. However,
for Ap = −1 the second “pump” part σz

i flips the sign
of Ap and consequently transforms any state |−1, λ〉 of
the excited state manifold directly to the corresponding
state |1, λ〉 in the ground state manifold.
The implementation of this jump operator in terms

of a gate sequence essentially follows this picture. The
auxiliary control atom is initially prepared in the state
|0〉c. Then, the many-body eigenstate of Ap = ±1 is
mapped onto the control atom by the gate sequence

S = Ry
c (π/2)

−1GRy
c (π/2), (29)

where Ry
c (π/2) = exp(−iπσy

c /4) is a local π/2 rotation
acting on the control atom and G is the mesoscopic Ryd-
berg gate (4). The mapping S can be described as

|0〉c|+1, λ〉 7→ |0〉c|+1, λ〉 (30)

|0〉c|−1, λ〉 7→ |1〉c|−1, λ〉 (31)

After this mapping we can therefore conditionally manip-
ulate the many-body states of the plaquette by a condi-
tional operation based on the state of the control atom.
We perform a controlled spin flip onto one of the four
system spins, given by

Uz
i (θ) = |0〉〈0|c ⊗ 1 + |1〉〈1|c ⊗ exp(iθσz

i ). (32)

Here, the angle θ controls the probability with which a
spin flip from the −1 to the +1 eigenspace is realized
(see below). The two-qubit gate Uz

i (θ) can be imple-
mented based on the mesocopic Rydberg gate. Finally,
we reverse the mapping by applying the inverse gate se-
quence S−1(= S). Then, we find that the control atom
remains in the |1〉 state every time Uz

i induces a spin flip,
i.e. in general it remains entangled with the four plaque-
tte spins. Consequently, before using the control atom for
the next cooling step, optical pumping to the |0〉 state is
required to reinitialize the control atom in |0〉 such that
it factors out from the dynamics of the plaquette spins.
It is this dissipative element that provides the necessary
ingredient that allows one to remove entropy from the
system. For θ ≪ 1 we can perform an expansion of the
dynamical map describing the evolution of the density
operator ρ, i.e.,

d

dt
ρ = γ

(

cpρc
†
p −

1

2

{

c†pcp, ρ
}

)

+O(θ3) (33)

with the jump operators cp given in Eq. (28) and the
cooling rate γ = θ2/t.
As demonstrated before, this discussion can be general-

ized to the entire lattice system, with the jump operators
for the site terms Bs being given by cs = σx

i (1 − Bs)/2.
The cooling process can then be understood in the anyon

PSfrag replacements

E
[E

0
]

θ = π/4
θ = π/2

θ = π

t[τ ]

0 10 20 30 40

−32

−28

−24

−20

−16

FIG. 9: Numerical simulations of the dissipative state prepa-
ration of the ground state of the toric code for N = 32 par-
ticles. For times t large compared to the simulation timestep
τ , essentially all anyons are removed from the system and the
ground state energy E = −NE0 is reached asymptotically.
By increasing the phase shift θ per timestep, the cooling effi-
ciency can be enhanced. Each data point corresponds to an
average over 1,000 realizations.

picture as follows: Each spin flip incoherently moves an
anyon to an adjacent plaquette or site, see Fig. 6, and
whenever two anyons of the same type meet, they are
annihilated and their energy is removed from the sys-
tem. For larger values of θ the dynamics is given by a
discrete version of the quantum master equation with the
cooling being even more efficient. As can be seen from
Fig. 9, the most efficient preparation of the ground state
occurs for θ = π. For this value of θ, a dissipative move
of an anyon to an adjacent plaquette takes place with
unit probability.

B. Frustration-free Hamiltonians

The above analysis for ground state cooling of the toric
code can be extended to a large class of interesting mod-
els. In general, one can design jump operators, where
any ground state of a frustration free Hamiltonian is the
unique dark state. With a suitable choice, one would
expect the cooling of any initial state into the ground
state of the frustration free Hamiltonian in analogy to
the toric code discussed above. An example for a spin
liquid phase at the Roskhar-Kievelson point has been
discussed in [26]. An important question for the exper-
imental realization is the efficiency of such ground state
cooling: within quantum information theory, the efficient
cooling requires that the time evolution of an arbitrary
initial state approaches the ground state exponentially
with a characteristic cooling rate, which scales polynomi-
ally in the system size. So far it has been demonstrated
that an important subclass of frustration free Hamilto-
nians, namely stabilizer states, can be cooled efficiently
[24, 51]. However, it remains an open question whether
the ground state of a general frustration free Hamiltonian
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can be prepared efficiently with dissipative techniques.
The toric code discussed above represents an example of
a stabilizer state, which exhibits abelian topological or-
der. However, a stabilizer formulation can also be derived
for large classes of states exhibiting non-abelian topolog-
ical order: an important example are the string net con-
densates [52]. As a consequence, the dissipative ground
state cooling illustrated for the toric code above allows
one also to efficiently prepare ground states with highly
non-abelian topological order. These can serve as the
building block for a topological quantum computer.

IV. CONCLUSION AND OUTLOOK

In this work we aimed at discussing the implementa-
tion of a digital quantum simulation architecture using
Rydberg atoms in optical lattices. Our goal was further-
more to outline schemes for the simulation of coherent
and dissipative dynamics corresponding to (many-body)
spin models. Recently, these concepts for the digital sim-
ulation of open-system dynamics have been extended to
systems of trapped ions [53]. In a remarkable experi-
ment [12], a combination of single- and multi-qubit (en-
tangling) gates and optical pumping has been used to
simulate coherent four-body spin interactions and dis-
sipative four-qubit stabilizer pumping, thereby demon-
strating in a minimal system of one plaquette the elemen-
tary building blocks required for future large-scale simu-
lations of Kitaev’s toric code and related models. While
the underlying physical interactions of this trapped ions
simulator naturally differ from the van-der-Waals inter-
action between Rydberg atoms, the current experiments
demonstrate the experimental feasibility of the digital ap-
proach to quantum simulation of open-system dynamics
in interacting many-body systems. Furthermore, they

clearly illustrate the generic effect of how errors in the
employed gates, as discussed in Sec. II C 1, affect the ac-
tual simulated dynamics, and suggest that, ultimately,
in future large-scale fault-tolerant quantum simulation
quantum error correction techniques might have to be
incorporated.

For the Rydberg simulator architecture described in
the present work, in principle all individual building
blocks have been experimentally demonstrated individ-
ually: The first entangling Rydberg gates have been re-
cently realized in the laboratory for two atoms held in
optical tweezers [54, 55]. Important next steps will be
to improve these Rydberg entangling operations and to
incorporate them in larger optical trap arrays and / or
optical lattices, where Mott insulator states involving
many lattice sites can be prepared with high accuracy
and single-site addressability has become available. In
combination with the development of efficient multi-atom
entangling Rydberg gates as the one reviewed here [31]
this appears to be a promising route towards large-scale
quantum simulations of many-body spin models, which
lie beyond the cope of classical simulation capabilities.
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