Skip to main content
Log in

Efficient entanglement channel construction schemes for a theoretical quantum network model with d-level system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum entanglement plays an essential role in the field of quantum information and quantum computation. In quantum network, a general assumption for many quantum tasks is that the quantum entanglement has been prior shared among participants. Actually, the distribution of entanglement becomes complex in the network environment. We present a theoretical quantum network model with good scalability. Then, three efficient and perfect schemes for the entanglement channel construction are proposed. Some general results for d-level system are also given. Any two communication sites can construct an entanglement channel via Bell states with the assistance of the intermediate sites on their quantum chain. By using the established entanglement channel, n sites can efficiently and perfectly construct an entanglement channel via an n-qudit cat state. More importantly, an entanglement channel via an arbitrary n-qudit state can also be constructed among any n sites, or even among any t sites where 1 ≤ t ≤ n. The constructed multiparticle entanglement channels have many useful applications in quantum network environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Zhou N.R., Wang L.J., Ding J., Gong L.H.: Quantum deterministic key distribution protocols based on the authenticated entanglement channel. Phys. Scripta 81, 045009 (2010)

    Article  MATH  ADS  Google Scholar 

  3. Zhou N.R. et al.: Quantum deterministic key distribution protocols based on teleportation and entanglement swapping. Opt. Commun. 284, 4836–4842 (2011)

    Article  ADS  Google Scholar 

  4. Shor P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  6. Briegel H.J., Dür W., Cirac J.I., Zoller P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  7. Jiang L., Taylor J.M., Khaneja N., Lukin M.D.: Optimal approach to quantum communication using dynamic programming. Proc. Natl. Acad. Sci. USA 104, 17291–17296 (2007)

    Article  ADS  Google Scholar 

  8. Jiang L. et al.: Quantum repeater with encoding. Phys. Rev. A 79, 32325–32334 (2009)

    Article  ADS  Google Scholar 

  9. Cirac J.I., Zoller P., Kimble H.J., Mabuchi H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  Google Scholar 

  10. Biham E., Huttner B., Mor T.: Quantum cryptographic network based on quantum memories. Phys. Rev. A 54, 2651–2658 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  11. Su Z.K. et al.: A simple scheme for quantum networks based on orbital angular momentum states of photons. Opt. Commun. 281, 5063–5066 (2008)

    Article  ADS  Google Scholar 

  12. Chapuran T.E. et al.: Optical networking for quantum key distribution and quantum communications. New J. Phys. 11, 105001 (2009)

    Article  ADS  Google Scholar 

  13. Metwally, N.: Entangled Network and Quantum Communication. arXiv:1106.1261v1 (2011)

  14. Elliott C.: Building the quantum network. New J. Phys. 4, 46 (2002)

    Article  ADS  Google Scholar 

  15. Elliott, C. et al.: Current status of the DARPA Quantum Network. arXiv:quant-ph/0503058 (2005)

  16. Peev M. et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 209–218 (2009)

    Article  MATH  Google Scholar 

  17. Paris, M.D.E., Paris, R.A.E.: Architecture of the Secoqc Quantum Key Distribution network. arXiv:quant-ph/0610202 (2006)

  18. Sasaki M. et al.: Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 19, 10387–10409 (2011)

    Article  ADS  Google Scholar 

  19. Lloyd S. et al.: Infrastructure for the quantum Internet. Comput. Commun. Rev. 34, 9–20 (2004)

    Article  Google Scholar 

  20. Lloyd, S., Shapiro, J.H., Wong, F.N.C.: Teleportation and the quantum internet. Technical report, MIT (2004)

  21. Kimble H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  22. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Ekert A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Bennett C.H. et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Bouwmeester D. et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  MATH  ADS  Google Scholar 

  27. Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Buhrman H., van Dam W., Hoyer P., Tapp A.: Multiparty quantum communication complexity. Phys. Rev. A 60, 2737–2741 (1999)

    Article  ADS  Google Scholar 

  29. Loukopoulos K., Browne D.E.: Secure multiparty computation with a dishonest majority via quantum means. Phys. Rev. A 81, 62336–62344 (2010)

    Article  ADS  Google Scholar 

  30. Yang C., Chu S., Han S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70, 022329 (2004)

    Article  ADS  Google Scholar 

  31. Zhang Z.J.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352, 55–58 (2006)

    Article  MATH  ADS  Google Scholar 

  32. Nguyen B.A., Kim J.: Joint remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 41, 095501 (2008)

    Article  ADS  Google Scholar 

  33. Nguyen B.A.: Joint remote state preparation via W and W-type states. Opt. Commun. 283, 4113–4117 (2010)

    Article  Google Scholar 

  34. Gottesman D., Kitaev A., Preskill J.: Encoding a qubit in an oscillator. Phys. Rev. A 64, 12310–12330 (2001)

    Article  ADS  Google Scholar 

  35. Karimipour V., Bahraminasab A., Bagherinezhad S.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A 65, 42320–42324 (2002)

    Article  ADS  Google Scholar 

  36. Bennett C.H. et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  37. Dur W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 62314–62325 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  38. De Sen A. et al.: Multiqubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states. Phys. Rev. A 68, 62306–62312 (2003)

    Article  MathSciNet  Google Scholar 

  39. Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    Article  ADS  Google Scholar 

  40. Raussendorf R., Briegel H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  41. Wang X., Yang G.: Generation and discrimination of a type of four-partite entangled state. Phys. Rev. A 78, 24301–24304 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  42. Yeo Y., Chua W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 60502–60505 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Bo Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, MM., Chen, XB., Luo, SS. et al. Efficient entanglement channel construction schemes for a theoretical quantum network model with d-level system. Quantum Inf Process 11, 1715–1739 (2012). https://doi.org/10.1007/s11128-011-0325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0325-z

Keywords

Navigation