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Abstract

We present a method to construct “X” form unitary Yang-Baxter R̆ matrices, which act on the tensor

product spaceV j1
i ⊗V j2

i+1. We can obtain a set of entangled states for (2j1+1)× (2 j2+1)-dimensional system

with these Yang-Baxter̆R matrices. By means of Yang-Baxter approach, a 8× 8 Yang-Baxter Hamiltonian

is constructed. Yangian symmetry and Yangian generators asshift operators for this Yang-Baxter system

are investigated in detail.
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I. INTRODUCTION

Quantum entanglement[1–4], which is a bizarre of quantum theory, has been recognized as an

important resource for applications in quantum information and quantum computation processing.

Quantum gates[5] are represented by unitary matrices, and they are building blocks of a quantum

computer. On the other hand, the topological quantum computation(TQC) also has been studied by

researchers[6]. Thus quantum computation is one of the important approaches to achieve a fault-

tolerant quantum computer. This proposal relies on the existence of topological states of matter,

whose quasiparticle excitations are non-Abelian anyons. Thus quasiparticles obey non-Abelian

braiding statistics, and quantum gate operators are implemented by braiding quasiparticles.

Recently, Kauffmanet.al. have shown that topological entanglement and quantum entangle-

ment have deep relations[7–9]. The authors propose that it is more fundamental to view braid ma-

trices(or solutions to Quantum Yang-Baxter Equation[10, 11]), which can implement topological

entanglement, as universal quantum gates. For example, theauthors showed that the Bell matrix

is nothing, but a braid matrix, and thus braid matrix local equivalent to a Control-Not(CNOT)

gate[8]. This motivated a novel way to study quantum entanglement by means of Yang-Baxter

approach[12–18].

The Yangian theory established by Drinfeld offer a mathematic method for the studies about the

symmetry of quantum integrable models in physics[19]. Manyresearchers have explored the role

of Yangian operators in physics[20–22]. For example, by means of Yangian, we can investigate the

symmetry for the integrable systems and shift operators. But many researchers worked on complex

systems, this motivated us to search a simple system with Yangian symmetry to investigate the role

of Yangian operators in this system.

In Sec. II, we will present a method for constructing the “X” form Yang-Baxter̆R matrices, and

then we will investigate the entanglement properties in Sec. III. In Sec.IV, we construct Yang-

Baxter Hamiltonian with a 8× 8 “X” form Yang-BaxterR̆ matrix, then Yangian symmetry and

shift operators are studied in this Yang-Baxter system.

II. THE “X” FORM YANG-BAXTER R̆ MATRICES

In this paper, Yang-Baxter̆R j1 j2(θ) matrix andM j1 j2 matrix are (2j1+1)× (2 j2+1)-dimensional

matrices acting on the tensor productV j1 ⊗ V j2, whereV j1 andV j2 are (2j1 + 1) and (2j2 + 1)
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dimensional vector space, respectively. As Yang-BaxterR̆ j1 j2(θ) matrix andM j1 j2 matrix acting on

the tensor productV j1
i ⊗V j2

i+1, we denote them by̆R j1 j2
i (θ) andM j1 j2

i , respectively. The notationI j1 j2

denotes (2j1 + 1)× (2 j2 + 1)-dimension identity matrix.

Let matricesM j1 j2 andM j2 j1 satisfying the following relations,

[M j1 j2]2 = [M j2 j1]2 = I j1 j2

M j1 j2
12 M j2 j1

23 = M j2 j1
23 M j1 j2

12 , (i.e.[M j1 j2
12 , M j2 j1

23 ] = 0)

M j2 j1
12 M j1 j2

23 = M j1 j2
23 M j2 j1

12 , (i.e.[M j2 j1
12 , M j1 j2

23 ] = 0).

(1)

In this paper, we set [M j1 j2]aα
bβ = [M j2 j1]αa

βb(− j1 ≤ a, b ≤ j1 and− j2 ≤ α, β ≤ j2)for convenience.

Then two spectral-dependent Yang-BaxterR̆ matrices via Yang-Baxterization[23–25] is obtained

to be,

R̆ j1 j2(θ) = e−i θ2 M j1 j2
= cos θ2I j1 j2 − isin θ

2M j1 j2,

R̆ j2 j1(θ) = e−i θ2 M j2 j1
= cos θ2I j1 j2 − isin θ

2M j2 j1.
(2)

Here we used Tayloy expansion to derive the right hand of Eq. 2. If the matricesM j1 j2 andM j2 j1 are

Hermitian matrices(i.e. [M j1 j2]† = M j1 j2 and [M j2 j1]† = M j2 j1), then we can verify that the matrices

R̆ j1 j2 and R̆ j2 j1 are unitary(i.e. R̆ j1 j2(θ)†R̆ j1 j2(θ) = R̆ j1 j2(θ)R̆ j1 j2(θ)† = I j1 j2 and R̆ j2 j1(θ)†R̆ j2 j1(θ) =

R̆ j2 j1(θ)R̆ j2 j1(θ)† = I j2 j1).

We can easily prove that̆R j1 j2(θ) andR̆ j2 j1(θ) satisfy the following Yang-Baxter equation(YBE),

R̆ j1 j2
12 (θ1)R̆

j2 j1
23 (θ1 + θ2)R̆

j1 j2
12 (θ2) = R̆ j2 j1

23 (θ2)R̆
j1 j2
12 (θ1 + θ2)R̆

j2 j1
23 (θ1),

R̆ j2 j1
12 (θ1)R̆

j1 j2
23 (θ1 + θ2)R̆

j2 j1
12 (θ2) = R̆ j1 j2

23 (θ2)R̆
j2 j1
12 (θ1 + θ2)R̆

j1 j2
23 (θ1).

(3)

where parametersθ1 andθ2 are called as spectral parameters. For convenience, we takeM j1 j2 and

M j2 j1 as [M j2 j1]αa
βb = [M j1 j2]aα

bβ = e−iϕaαδa,−bδα,−β. Considering the first equation in Eqs. 1, we set

ϕaα = −ϕ−a−α. SubstitutingM j1 j2 andM j2 j1 into the second and the third relations in Eqs. 1, we

can obtain the following conditions,

ϕaα + ϕ−aα = ϕbα + ϕ−bα,

ϕaα + ϕa−α = ϕaβ + ϕa−β.
(4)

With this method, we can obtain high dimentional Yang-Baxter R̆ j1 j2 matrices easily. By means of

these Yang-Baxter̆R j1 j2 matrices, we can investigate quantum entanglement consequently.
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III. THE “X” FORM R̆ MATRICES AS QUANTUM GATES

In this section, three examples are shown to illustrate thismethod in detail. The casej1 = j2 =

1/2 gives us a 4×4 unitary Yang-Baxter̆R1/2,1/2(θ) matrix. Thus we can view thĕR1/2,1/2(θ) matrix

as a quantum gate for two-qubit system. Ifj1 = 1 and j2 = 1/2, we can obtain a 6×6 Yang-Baxter

R̆1,1/2 matrix. This unitaryR̆1,1/2 can entangle quantum states in system with one qubit and one

qutrit. When j1 = 3/2 and j2 = 1/2, a three-qubit quantum gatĕR3/2,1/2 can be obtained. For

quantify the entanglement of bi-particle system states, weuse the negativity[26, 27] defined by,

N(ρ) =
‖ρTB‖1 − 1

d − 1
. (5)

whereρTB is the partial transpose of a stateρ in d × d′(d ≤ d′) quantum system, and the notation

‖A‖1 = Tr
√

A†A denotes the trace norm ofA. It should be noted that the negativity criterion is

necessary and sufficient only for 2⊗ 2 and 2⊗ 3 quantum systems.

A. The 4× 4 “X” form R̆ matrix

If j1 = j2 = 1/2, the equations in Eqs. (1) can be simplified as [M1/2,1/2]2 = I1/2,1/2 and

[M1/2,1/2
12 , M1/2,1/2

23 ] = 0. Then we can obtain a matrixM1/2,1/2 as following,

M1/2,1/2 = e−i(ϕ+ π2 )s+1 s+2 + s+1 s−2 + s−1 s+2 + ei(ϕ+ π2 )s−1 s−2 .

The Yang-Baxter̆R1/2,1/2 matrix can be obtained as follows,

R̆1/2,1/2(θ) = e−i θ2 M1/2,1/2
= cos

θ

2
I1/2,1/2 − i sin

θ

2
M1/2,1/2,

or in matrix form,

R̆1/2,1/2(θ) =

















































cosθ2 0 0 − sin θ
2e−iϕ

0 cosθ2 −i sin θ

2 0

0 −i sin θ
2 cosθ2 0

sin θ

2eiϕ 0 0 cosθ2

















































.
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In this section, we choose{|00〉, |01〉, |10〉, |11〉} as standard bases. Acting this Yang-BaxterR̆1/2,1/2

matrix on the standard bases, we can obtain a set entangled states{|ei〉, i = 1, 2, 3, 4}£
















































|e1〉
|e2〉
|e3〉
|e4〉

















































= R̆1/21/2(θ)

















































|00〉
|01〉
|10〉
|11〉

















































=

















































cosθ2 |00〉 − sin θ
2e−iϕ|11〉

cosθ2 |01〉 − i sin θ

2 |10〉
−i sin θ

2 |01〉 + cosθ2 |10〉
sin θ

2eiϕ|00〉 + cosθ2 |11〉

















































.

Let us find the entanglement degree of the above states by using negativity. For a pure two qubit

state,|ψ〉 = a|00〉 + b|11〉 or |φ〉 = a|01〉 + b|10〉, the negativity can be find to beN(|ψ〉) = N(|φ〉) =
2|ab|. We can easily obtain the negativity for the above entangledstates asN(|ei〉) = | sinθ|,
wherei = 1, 2, 3, 4. With the Yang-Baxter̆R acting on the standard bases, we can obtain a set

of entangled states, and these states possess the same entanglement degree which depends on

the parameterθ. This character of the Yang-BaxterR̆ matrices has revealed in the Refs.. For

the 2-qubit quantum system, there is good entanglement measure concurrence[28, 29],C(ρ12) =

Max{0, λ1 − λ2 − λ3 − λ4}. Here{λi} denotes the eigenvalues of the matrixρ12σ
y
1σ

y
2ρ
∗
12σ

y
1σ

y
2. The

notationsρ12 andρ∗12 are biqubit density matrix and its complex conjugate, correspondingly. The

notationsσy
1,2 are pauli matrices. We can verify that concurrence is equivalence to negativity for

two-qubit “X” state(which density matrices are “X” form).

B. The 6× 6 “X” form R̆ matrix

When j1 = 1 and j2 = 1/2, with the relations in Eqs. (1), we can determine two matrices

M1,1/2 and M1/2,1. In this section, the bases for the tensor product spaceV j1 ⊗ V j2 are given by

{|aα〉 : a = 1, 0,−1;α = 1/2,−1/2}. In this case, the Eqs. (4) gives the following relation,

2ϕ0,1/2 = ϕ1,1/2 − ϕ1,−1/2. (6)

If we setϕ1,1/2 = ϕ1 andϕ1,−1/2 = ϕ2, thenϕ0,1/2 = (ϕ1−ϕ2)/2. Then a 6-dimensionalM1,1/2 matrix

is given as follows,

M1,1/2 = (e−iϕ1 |1, 1/2〉〈−1,−1/2| + e−iϕ2 |1,−1/2〉〈−1, 1/2|

+ e−i(ϕ1−ϕ2)|0, 1/2〉〈0,−1/2|) + H.C (7)
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TheM1,1/2 matrix takes the following matrix form,

M1,1/2 =















































































0 0 0 0 0 e−iϕ1

0 0 0 0 e−iϕ2 0

0 0 0 e−i(ϕ1−ϕ2) 0 0

0 0 ei(ϕ1−ϕ2) 0 0 0

0 eiϕ2 0 0 0 0

eiϕ1 0 0 0 0 0















































































(8)

Then a 6-dimensional Yang-BaxterR̆1,1/2(θ) can be construct as following,

R̆1,1/2(θ) = cos
θ

2
I1,1/2 − i sin

θ

2
M1,1/2 (9)

WhenR̆1,1/2(θ) act on the standard basis(product states),














































































|e1〉
|e2〉
|e3〉
|e4〉
|e5〉
|e6〉















































































= R̆1,1/2(θ)















































































|1, 1/2〉
|1,−1/2〉
|0, 1/2〉
|0,−1/2〉
| − 1, 1/2〉
| − 1,−1/2〉















































































(10)

Then we obtain six entangled states,

|e1〉 = cosθ2 |1, 1/2〉 − i sin θ

2e−iϕ1 | − 1,−1/2〉
|e2〉 = cosθ2 |1,−1/2〉 − i sin θ

2e−iϕ2 | − 1, 1/2〉
|e3〉 = cosθ2 |0, 1/2〉 − i sin θ

2e−i(ϕ1−ϕ2)|0,−1/2〉
|e4〉 = −i sin θ

2ei(ϕ1−ϕ2)|0, 1/2〉 + cosθ2 |0,−1/2〉
|e5〉 = −i sin θ

2eiϕ2|1,−1/2〉 + cosθ2 | − 1, 1/2〉
|e6〉 = −i sin θ

2eiϕ1|1, 1/2〉 + cosθ2 | − 1,−1/2〉

(11)

Using the formula of negativity, we can obtain the entanglement degree for the eigenstates of this

Yang-Baxter system asN(|ei〉) = | sinθ|. These eigenstates possess the same degree of entangle-

ment.

C. The 8×8 Yang-Baxter system

When j1 = 3/2 andj2 = 1/2, we can obtain a 8×8 M3/2,1/2 matrix which satisfying the relations

Eqs.(1). For the following convenience, we introduce the notation{|i〉; i = 1, 2 · · ·8} to denote the

6



standard three-qubit basis.

M3/2,1/2 = i(e−iϕ1 s+1 s+2 s+3 + e−iϕ2 s+1 s+2 s−3 + e−iϕ3 s+1 s−2 s+3 + e−iϕ4 s+1 s−2 s−3)

− i(eiϕ4 s−1 s+2 s+3 + eiϕ3 s−1 s+2 s−3 + eiϕ2 s−1 s−2 s+3 + eiϕ1 s−1 s−2 s−3)

If parametersϕi
,s satisfy the relationϕ1 + ϕ4 = ϕ2 + ϕ3, then theM

3
2

1
2 satisfy the relations in

Eqs.(1). Then we can obtain a 8× 8 unitary Yang-Baxter̆R−matrix,

R̆3/2,1/2(θ) = cos
θ

2
I3/2,1/2 − i sin

θ

2
M3/2,1/2

We can verify that the Yang-Baxter̆R3/2,1/2(θ) matrix is unitary(i.e. R̆(θ)†R̆(θ) = R̆(θ)R̆(θ)† = I).

Let H0 = s3
1⊗ I2⊗ I3. With this Yang-Baxter̆R−matrix and this simple Hamiltonian, we can derive

a hamiltonian asH = R̆(θ)†H0R̆(θ) =
∑4

i=1 Bi · Si, whereBi = (sinθcosϕi, sinθsinϕi, cosθ) and

S +1 = |1〉〈8|, S −1 = |8〉〈1|, S 3
1 =

1
2(|1〉〈1| − |8〉〈8|);

S +2 = |2〉〈7|, S −2 = |7〉〈2|, S 3
2 =

1
2(|2〉〈2| − |7〉〈7|);

S +3 = |3〉〈6|, S −3 = |6〉〈3|, S 3
3 =

1
2(|3〉〈3| − |6〉〈6|);

S +4 = |4〉〈5|, S −4 = |5〉〈4|, S 3
4 =

1
2(|4〉〈4| − |5〉〈5|).

After some algebra, we can obtain the eigenvalues{Eα
i } and eigenvectors{|eαi 〉} (α = +,−; i =

1, 2, 3, 4) for HamiltonianH as following,

E+i = −E−i = 1/2,

and corresponding eigenvectors,

|e+1〉 = cos θ2 |1〉 + sin θ

2eiϕ1 |8〉, |e−1〉 = −sin θ

2e−iϕ1 |1〉 + cos θ2 |8〉;
|e+2〉 = cos θ2 |2〉 + sin θ

2eiϕ2 |7〉, |e−2〉 = −sin θ
2e−iϕ2 |2〉 + cos θ2 |7〉;

|e+3〉 = cos θ2 |3〉 + sin θ
2eiϕ3 |6〉, |e−3〉 = −sin θ

2e−iϕ3 |3〉 + cos θ2 |6〉;
|e+4〉 = cos θ2 |4〉 + sin θ

2eiϕ4 |5〉, |e−4〉 = −sin θ

2e−iϕ4 |4〉 + cos θ2 |5〉.

In fact, the HamiltonianH can be recast as following,

H =
4
∑

i=1

(|e+i 〉〈e+i | − |e−i 〉〈e−i |) (12)

Consider the state|ψ〉 in a three-qubit Hilbert space|ψ〉 ∈ HA ⊗ HB ⊗ HC. Its coefficients with

respect to a basis of product states (the ‘computational basis’) areψi = 〈i|ψ〉, i ∈ {0, 1 · · ·8}. An

important measure for the entanglement in pure three-qubitstates is the three-tangle (or residual

7



tangle) introduced in Ref.[30]. The three-tangle of|ψ〉 is a so-called polynomial invariant and can

be written in terms of the coefficientsψi as

τ3(ψ) = 4|d1 − 2d2 + 4d3| (13)

d1 = ψ2
1ψ

2
8 + ψ

2
2ψ

2
7 + ψ

2
3ψ

2
6 + ψ

2
5ψ

2
4

d2 = ψ1ψ8ψ4ψ5 + ψ1ψ8ψ6ψ3 + ψ1ψ8ψ7ψ2

+ ψ4ψ5ψ6ψ3 + ψ4ψ5ψ7ψ2 + ψ6ψ3ψ7ψ2

d3 = ψ1ψ7ψ6ψ4 + ψ8ψ2ψ3ψ5 .

Then we can obtain three-tangle for the Eigenstates are as following,

τ3(|eαi 〉) = sin2θ.

By using the definition of concurrence we can obtain the

CAB(|eαi 〉) = CAC(|eαi 〉) = CBC(|eαi 〉) = 0

wherei = 1, 2, 3, 4 andα = +,−. When the parameterθ = π/2, τ3(|eαi 〉) = 1 andCXY(|eαi 〉) =
0(XY = AB, BC, AC). Then we can say these eigenstates are GHZ type states.

IV. YANGIAN SYMMETRY AND SHIFT OPERATORS

In the Sec.III, we construct a Hamiltonian(i.e. Eq.(12)) with the Yang-Baxter̆R3/2,1/2 matrix.

As is known to all, the Yangian is a very important tool to study symmetry and shift operators.

Motivated this, we will investigate the symmetry to this Yang-Baxter Hamiltonian and Yangian

generators as shift operators in detail.

In fact, with the eigenvectors{|eαi 〉} we can construct a special Yangian Y(sl(2)) realization

{I±, I3} and{F±, F3} as following,

I+ = |e+1〉〈e+2 | + |e+3〉〈e+4 | + |e−1〉〈e−2 | + |e−3〉〈e−4 |

I− = |e+2〉〈e+1 | + |e+4〉〈e+3 | + |e−2〉〈e−1 | + |e−4〉〈e−3 |

I3 =
1
2

[(|e+1〉〈e+1 | + |e+3〉〈e+3 | + |e−1〉〈e−1 | + |e−3〉〈e−3 |)

− (|e+2〉〈e+2 | + |e+4〉〈e+4 |) + |e−2〉〈e−2 | + |e−4〉〈e−4 |)],
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and

F+ = 2α(|e+1〉〈e+4 | + β|e+3〉〈e+2 |) + 2γ(|e−1〉〈e−4 | + δ|e−3〉〈e−2 |)

F− = 2α(β|e+4〉〈e+1 | + |e+2〉〈e+3 |) + 2γ(δ|e−4〉〈e−1 | + |e−2〉〈e−3 |)

F3 = α(|e+1〉〈e+3 | − |e+2〉〈e+4 | + β|e+3〉〈e+1 | − β|e+4〉〈e+2 |)

+γ(|e−1〉〈e−3 | − |e−2〉〈e−4 | + δ|e−3〉〈e−1 | − δ|e−4〉〈e−2 |).

It is not difficulty to verify that{I±, I3} and {F±, F3} satisfy the following YanigianY(sl(2))

relations,

[I3, I±] = ±I±, [I+, I−] = 2I3

[I3, F±] = [F3, I±] = ±F±, [I±, F∓] = ±2F3

[I3, F3] = [I±, F±] = 0,

and

[F3, [F+, F−]] = 0, [F±, [F3, F±]] = 0

[F±, [F±, F∓]] ± 2[F3, [F3, F±]] = 0.

We can verify that the Hamiltonian and Yangian operators satisfy the following relation,

[H, Yα] = 0,

whereY = I, F andα = ±, 3. That is to say this Hamiltonian possess a Yangian Y(sl(2)) symmetry.

1
e

α

2
e

α

3
e

α

4
e

α

I
−

I
−

I
+

I
+

3
F

3
FF

+

F
−

F
−

F
+

FIG. 1: The states transfer graph for the Yang-Baxter Hamiltonian(α = ±).

This maybe the simplest Hamiltonian with YangianY(sl(2)) symmetry. In quantum physics, the
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Yangian generators can be used to construct shift operators. Then we will construct shift operators

for this Yang-Baxter Hamiltonian. When the Yangian operators {I±, I3} and {F±, F3} act on the

eigenstates of this Yang-Baxter Hamiltonian, we can obtaina state transfer graph in Fig.(1).

V. SUMMARY

In this paper, we construct a set of (2j1 + 1) × (2 j2 + 1)−dimensional “X” form Yang-Baxter

R̆ j1 j2(θ). We investigated this set unitary Yang-BaxterR̆ j1 j2(θ) as quantum gate in quantum com-

putation processing. When these “X” form Yang-BaxterR̆ j1 j2(θ) matrices act on standard bases,

we can obtain a set of entangled states, which possess the same degree of quantum entanglement.

We also construct a Yang-Baxter Hamiltonian with Yangian Y(sl(2)) symmetry. And Yangian

generators can be viewed as shift operators.
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