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Abstract
We present a method to construct “X” form unitary Yang—Ba%natrices, which act on the tensor
product spac&’ih@Vijjl. We can obtain a set of entangled states fog 2L) x (22 + 1)-dimensional system
with these Yang-BaxteR matrices. By means of Yang-Baxter approach,>a@Yang-Baxter Hamiltonian
is constructed. Yangian symmetry and Yangian generatoshifisoperators for this Yang-Baxter system

are investigated in detalil.
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I. INTRODUCTION

Quantum entanglement|1-4], which is a bizarre of quantweony) has been recognized as an
important resource for applications in quantum informaaod quantum computation processing.
Quantum gates[5] are represented by unitary matrices,haydare building blocks of a quantum
computer. On the other hand, the topological quantum coatipui TQC) also has been studied by
researchers[6]. Thus quantum computation is one of theritapbapproaches to achieve a fault-
tolerant quantum computer. This proposal relies on theexie of topological states of matter,
whose quasiparticle excitations are non-Abelian anyortsusTquasiparticles obey non-Abelian
braiding statistics, and quantum gate operators are ingsiéed by braiding quasiparticles.

Recently, Katfimanet.al. have shown that topological entanglement and quantum gletan
ment have deep relations[7—9]. The authors propose thsatribre fundamental to view braid ma-
trices(or solutions to Quantum Yang-Baxter Equation[1X]),Jwhich can implement topological
entanglement, as universal quantum gates. For examplapthers showed that the Bell matrix
is nothing, but a braid matrix, and thus braid matrix localigglent to a Control-Not(CNOT)
gate[8]. This motivated a novel way to study quantum entmght by means of Yang-Baxter
approach[12-18].

The Yangian theory established by Drinfeldles a mathematic method for the studies about the
symmetry of quantum integrable models in physics[19]. Masearchers have explored the role
of Yangian operators in physics|[20--22]. For example, bymaed Yangian, we can investigate the
symmetry for the integrable systems and shift operatorsniumy researchers worked on complex
systems, this motivated us to search a simple system withigasymmetry to investigate the role
of Yangian operators in this system.

In Sec[D, we will present a method for constructing the “Xtih Yang-BaxteR matrices, and
then we will investigate the entanglement properties in B8cIn Sec[lV, we construct Yang-
Baxter Hamiltonian with a & 8 “X” form Yang-BaxterR matrix, then Yangian symmetry and

shift operators are studied in this Yang-Baxter system.

Il. THE “X” FORM YANG-BAXTER RMATRICES

In this paper, Yang-Baxtd®iri2(6) matrix andMitiz matrix are (3, + 1) x (2], + 1)-dimensional

matrices acting on the tensor proddt ® Viz, whereVit andViz are (g, + 1) and (3, + 1)



dimensional vector space, respectively. As Yang-BaRtgt(6) matrix andM itz matrix acting on

the tensor producfih@ij we denote them bl;lijljz(e) and Mijljz, respectively. The notatiari2

i+1°

denotes (2, + 1) x (2j, + 1)-dimension identity matrix.

Let matricesMi2 and M2l satisfying the following relations,

[Mjliz]Z — [szjl]Z — |2

jtianpi2is _ ppl2iipgiiiz ; j1j2 jeiiy _

M *Mys™ = M3 Mi5?,  (i.e[M;°, My3™] = 0) 1)
j2iinpinie _ ppltiapgliein ; j2j1 jij21 _

|\/|12 |\/|23 = |\/|23 |\/|12 R (|.e.[M12 " |\/|23 ] =0).

In this paper, we setl*2]2¢ = [M21]3(~j, < a,b < ji and-j; < @, < jp)for convenience.
Then two spectral-dependent Yang-Bax@matrices via Yang-Baxterization[23-25] is obtained

to be,

o o nainl o .
Ritiz(g) = e 12M"? = cos%l iz _ ,Smngz’

" - e
Ri2li(g) = e2M?" = cosl itz — jsinfMi2iz,

(@)

Here we used Tayloy expansion to derive the right hand dfEjt2e matricedM 1l andM 211 are
Hermitian matrices(e. [M112]" = M1z and Mi2i1]f = Mi2i1), then we can verify that the matrices
Rit2 and Rzt are unitaryile. Rit2(9)'Ritiz(g) = Ritlz(g)Ritiz(g)" = |11lz and R2i1(9)TRI2i1(9) =
Rizi1(g)Ri2i1(g)F = |2i1),

We can easily prove th&ti1i2(9) andRi2i1(¢) satisfy the following Yang-Baxter equation(YBE),

RIS (00)RE (01 + 0)RIS(62) = R (0)R15(01 + 0) R (60), .
R (BUR(01 + 02)R(62) = RS (02)R5™ (01 + 62 R (6a).

where parametei and6d, are called as spectral parameters. For convenience, wé/takeand
Mzl as MIzii]ga = [MI2]e = e 5, w6, 5. Considering the first equation in EGS. 1, we set
Vaw = —P_aq. SubstitutingMiziz and M2l into the second and the third relations in Eds. 1, we
can obtain the following conditions,

Pao T P-an = Pbe t P-bas (4)

Pao t Pa—a = Pag t+ Pap-
With this method, we can obtain high dimentional Yang-Baiie2 matrices easily. By means of

these Yang-BaxteRi1iz matrices, we can investigate quantum entanglement coastigu



lIl. THE“X” FORM RMATRICES AS QUANTUM GATES

In this section, three examples are shown to illustraterti@thod in detail. The cage = j, =
1/2 gives us a 4 4 unitary Yang-BaxteR/2/2(9) matrix. Thus we can view the"/2%/2(9) matrix
as a guantum gate for two-qubit systemjqlt= 1 andj, = 1/2, we can obtain a®6 Yang-Baxter
RMY2 matrix. This unitaryR-2 can entangle quantum states in system with one qubit and one
qutrit. Whenj, = 3/2 andj, = 1/2, a three-qubit quantum gak&/2%/2 can be obtained. For

guantify the entanglement of bi-particle system statesysesthe negativity[26, 27] defined by,

_ o™l -1

NG) = Lot ©)

wherep'® is the partial transpose of a statén d x d’(d < d’) quantum system, and the notation
IAll; = Tr VATA denotes the trace norm &f It should be noted that the negativity criterion is

necessary and fiicient only for 2® 2 and 2® 3 quantum systems.

A. The4x4“X”form R matrix

If j; = jo» = 1/2, the equations in Eqd.](1) can be simplified M/FY2)2 = 1Y/212 and

[M1/22, MJ[2*?] = 0. Then we can obtain a matrM/2%/2 as following,
MU2VZ = eltDsls) + 57s; + 585 + €6 Pg ;.

The Yang-BaxteRY2%/2 matrix can be obtained as follows,
§1/2,1/2(0) _ e—ing/z’l/z _ Cosgll/z,l/z _i Sinng/z’l/z,

or in matrix form,

cos{ 0O 0 -—singe’
0 Hp ]
@/2’1/2(0) _ 0 cos; -—ising 0
0 —ising cos§ 0
singe¥ 0 0 cosg




In this section, we choog0), |01, |10), |11)} as standard bases. Acting this Yang-BaiE#1/2

matrix on the standard bases, we can obtain a set entangted{&),i = 1,2, 3,4}£

ley) |00) cos4|00) — singe¥|11)
&) _ ) |01) _ cos$|01) — i sin§|10)

les) |10) —i sin$|01) + cos$|10)
|€s) 111) sin€¥|00) + cos§|11)

Let us find the entanglement degree of the above states by negativity. For a pure two qubit
statey) = al00) + b|11) or |¢) = al01) + b|10), the negativity can be find to bé(jy)) = N(|¢)) =

2labl. We can easily obtain the negativity for the above entangtates asN(lg)) = |sing|,
wherei = 1,2,3,4. With the Yang-BaxteR acting on the standard bases, we can obtain a set
of entangled states, and these states possess the samglesnéant degree which depends on
the parameteé. This character of the Yang-Baxt& matrices has revealed in the Refs.. For
the 2-qubit quantum system, there is good entanglementureeasncurrence[28, 29 (01,) =
Max{0, 41 — 1> — A3 — A4}. Here{4;} denotes the eigenvalues of the marixos’oy0;,070%. The
notationse1, andpj, are biqubit density matrix and its complex conjugate, gpoadingly. The
notationSG{’2 are pauli matrices. We can verify that concurrence is edgrive to negativity for

two-qubit “X” state(which density matrices are “X” form).

B. The6x6“X”form R matrix

Whenj; = 1 andj, = 1/2, with the relations in Eqs[{1), we can determine two maric
MLY2 and MY21, In this section, the bases for the tensor product spdce V2 are given by

{lae) :a=1,0,-1;a = 1/2,-1/2}. In this case, the Eq4.1(4) gives the following relation,

2900,1/2 = Y1172 — P1.-1/2. (6)

If we setp11/2 = ¢1 ander_1/2 = @2, thenpg /2 = (p1—¢2)/2. Then a 6-dimensionali1/2 matrix

is given as follows,

M2 = (€741, 1/2)(-1,-1/2 + € 7|1, -1/2)(-1,1/2|
n e—i(¢1—¢2)|0’ 1/2)(0,-1/2) + H.C (7)



The MLY2 matrix takes the following matrix form,

0 O 0 0 0 en
0 O 0 0 el 0
0O O 0 gilei-v2) 0
MLL/2 = 8
0 0 dlp¢2) 0 0 0 ( )
0 €¢ 0 0 0 0
g 0 0 0 0 0

Then a 6-dimensional Yang-Baxte/2(6) can be construct as following,
o 6 . .0
RM/2(9) = coséll’l/2 —i smEMl’l/2 (9)

WhenR2(6) act on the standard basis(product states),

e 1,1/2)

&) 11,-1/2)

) | _ iz | 012 (10
€4 0,-1/2)

&) |- 1,1/2)

&) |-1,-1/2)

Then we obtain six entangled states,

ler) = cos§|1,1/2) —isinge | - 1,-1/2)
&) = cos§|l, —1/2) —isinfe¥?| - 1,1/2)
les) = c0s§|0,1/2) — i singe (17¥2)|0, —1/2)
lesy = —i sine“17¢2)|0,1/2) + cos§|0, -1/2)
lesy = —isinge¥2|1,-1/2) + cosy| - 1,1/2)
lesy = —isinge¥1[1,1/2) + cosg| - 1,-1/2)

(11)

Using the formula of negativity, we can obtain the entangenuegree for the eigenstates of this
Yang-Baxter system as(le)) = |sing|. These eigenstates possess the same degree of entangle-
ment.

C. The 8x8 Yang-Baxter system

Whenj; = 3/2 andj, = 1/2, we can obtain a:88 M*/%1/2 matrix which satisfying the relations

Eqgs.[1). For the following convenience, we introduce th&tion{|i);i = 1,2--- 8} to denote the

6



standard three-qubit basis.

MIZH2 = (e 5[ s)s) + €77 s Ss; + €795, 8] + €S| 5 S;)
- i(@"s 58 + €95 5)5; + €75 5, 5] + €15 5 5))
If parametersp;'s satisfy the relations; + ¢4 = @, + @3, then theM?? satisfy the relations in

Egs.(1). Then we can obtain ax& unitary Yang-Baxte?{—matrix,
o 0 .. 0

R3/2’1/2(9) — COS_|3/2,1/2 —isin= M3/2,1/2
2 2

We can verify that the Yang-Baxt&®/2%/2(9) matrix is unitary{(.e. R®)'R(®) = RO)R©O)" = ).
LetHp = ﬁ@ I, ®13. With this Yang-BaxteF'{—matrix and this simple Hamiltonian, we can derive

a hamiltonian a1 = R(6)'HoR(6) = 3, B; - S, whereB; = (sindcosy;, Sindsing;, cosd) and

S; =11%8|, Sy =18X1l, S} = 3(I1X(1I - 18)8));
Sy =127, S; =172, S5 = 3(12X2 - [7X7);
S; = 13)(6l, S5 =16)(3|, S§ = 3(13)3| - 16)6l);
S; = 14(5l, S, = 15X4, S§ = 3(44l - 15)5).

After some algebra, we can obtain the eigenvali$ and eigenvector§e’)} (@ = +, -1 =

1,2, 3,4) for HamiltonianH as following,
Ef=-E =1/2,
and corresponding eigenvectors,

lef) = cosg|1) + sinfe¥1[8), |e7) = —sinde“1|1) + cosy|8);
leb) = cosgl2) + sine¥2[7), |e5) = —sinje¥2|2) + cos§|7);
let) = cosyl3) + singe¥:|6), |e5) = —singe'¥3(3) + cos§|6);

e}y = cosg|4) + sinfe¥|5), |e;) = —singe'#|4) + cos§|5).

In fact, the HamiltoniaH can be recast as following,
4
H = > (&X'l - leXe ) (12)
i=1

Consider the statg) in a three-qubit Hilbert spade¢) € Ha ® Hg ® Hc. Its codiicients with
respect to a basis of product states (the ‘computationad’hbase y; = (ily), i € {0,1---8}. An

important measure for the entanglement in pure three-gtdies is the three-tangle (or residual
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tangle) introduced in Ref.[30]. The three-tanglgfis a so-called polynomial invariant and can

be written in terms of the cdicientsy; as

73(¥)
i = g+ URU7 + U + UEYs
Ao = Yalshas + Yasdels + Yasdri
+ Yasels + Yaspo + Yo
ds = Yardela + Yahathsys .

4|d1 - 2d2 + 4d3| (13)

Then we can obtain three-tangle for the Eigenstates ardlawiiog,
Ta(ef)) = sin’.
By using the definition of concurrence we can obtain the
CAB(leia» = CAC(|eia>) = CBC(|eia>) =0
wherei = 1,2,3,4 anda = +,—. When the parametét = n/2, 75(le)) = 1 andCxy(l€')) =

O(XY = AB, BC, AC). Then we can say these eigenstates are GHZ type states.

IV. YANGIAN SYMMETRY AND SHIFT OPERATORS

In the Se&lll, we construct a Hamiltoniam{ Eq.{12)) with the Yang-BaxteR®/21/2 matrix.
As is known to all, the Yangian is a very important tool to stigsymmetry and shift operators.
Motivated this, we will investigate the symmetry to this YaBaxter Hamiltonian and Yangian
generators as shift operators in detail.

In fact, with the eigenvectorf§ie’)} we can construct a special YangiansN®)) realization
{l., I3} and{F., F3} as following,

lEXE ] + €5 (€| + 16 (& ] + &5 )&y

&3 )(er] + e (5] + 165 )(er | + ey (&5

1
= 5[(IGI><GII +lesXes] + e e + |5 )(&5))
(XS] + legXe;)) + I X e + leg e )],

w
I



and

F. = 2o(le)Xe;] + Bles (&) + 2y(le) (€| + oles (&, )
F_ = 2a(Bley)Xerl + &5 (&5]) + 2y(0le; ey | + 16, )(65])
Fs = a(le )€l - 1€)X + Bles)Xel| - Ble; X&)

+y(le (& - 16 )& | + oles e | - dleg & )).

It is not difficulty to verify that{l., I3} and{F., F3} satisfy the following Yanigiarny(sl(2))

relations,
[13, 1] = #ls, [1, 1] =2l3
[Is, F.] = [Fa, 1] = £F., [l Fs] = £2F;3
[Is,Fa] = [I+,F.] =0,

and

[Fs.[Fi, F I =0, [Fu[Fs,F.]l =0
[F..[F. Fsll £ 2[Fs,[Fs F.]] = 0.

We can verify that the Hamiltonian and Yangian operatonsfsethe following relation,
[H,Y.] =0,

whereY = |, F anda = +, 3. Thatis to say this Hamiltonian possess a Yangiash(¥)) symmetry.

o
&)

FIG. 1: The states transfer graph for the Yang-Baxter Hamiing = +).

This maybe the simplest Hamiltonian with Yangi#(sl(2)) symmetry. In quantum physics, the

9



Yangian generators can be used to construct shift operdtbesn we will construct shift operators
for this Yang-Baxter Hamiltonian. When the Yangian opersf{b., I3} and{F., F3} act on the

eigenstates of this Yang-Baxter Hamiltonian, we can oldatate transfer graph in Fig.(1).

V. SUMMARY

In this paper, we construct a set ofj{2 1) x (2], + 1)-dimensional “X” form Yang-Baxter
Riti2(g). We investigated this set unitary Yang-Baxi2(6) as quantum gate in quantum com-
putation processing. When these “X” form Yang-Bax®2(¢) matrices act on standard bases,
we can obtain a set of entangled states, which possess tleedegyree of quantum entanglement.
We also construct a Yang-Baxter Hamiltonian with Yangiasl(@)) symmetry. And Yangian

generators can be viewed as shift operators.
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