Skip to main content
Log in

Different dynamics of classical and quantum correlations under decoherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The dynamics of classical and quantum correlations under nondissipative and dissipative decoherences are analytically and numerically investigated with both one-side measures and two-side measures. Specifically, two qubits under local amplitude damping decoherence and depolarizing decoherence channels are considered. We show that, under the action of amplitude damping decoherence, both the entanglement and correlations of the different types of initial states with same initial values, suffer different types of dynamics. Moreover, the transfers of the entanglement and correlations between the system and the environment for different types of initial states are also shown to be different. While for the action of depolarizing decoherence, there does not exist sudden change in the decay rates of both the classical and quantum correlations, which is different from some other nondissipative channels. Furthermore, the quantum dissonance can be found to keep unchanged under the action of depolarizing decoherence. Such different dynamic behaviors of different noisy quantum decoherence channels reveal distinct transmission performance of classical and quantum information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47(10), 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Yu T., Eberly J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97(14), 140403 (2006)

    Article  ADS  Google Scholar 

  4. Xu J.S., Li C.F., Gong M., Zou X.B., Shi C.H. et al.: Experimental demonstration of photonic entanglement collapse and revival. Phys. Rev. Lett. 104(10), 100502 (2010)

    Article  ADS  Google Scholar 

  5. Meyer D.A.: Sophisticated quantum search without entanglement. Phy. Rev. Lett. 85(9), 2014–2017 (2000)

    Article  ADS  Google Scholar 

  6. Kenigsberg D., Mor T., Ratsaby G.: Quantum advantage without entanglement. Quantum Inf. Comput. 6(7), 606–615 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Datta A., Shaji A., Caves C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100(5), 050502 (2008)

    Article  ADS  Google Scholar 

  8. Lanyon B.P., Barbieri M., Almeida M.P., White A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101(20), 200501 (2008)

    Article  ADS  Google Scholar 

  9. Henderson L., Vedral V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34(35), 6899–6905 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Ollivier H., Zurek W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  11. Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277–4281 (1989)

    Article  ADS  MATH  Google Scholar 

  12. Ollivier H., Zurek W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  13. Oppenheim J., Horodecki M., Horodecki P., Horodecki R.: Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89(18), 180402 (2002)

    Article  ADS  MATH  Google Scholar 

  14. Terhal B.M., Horodecki M., Leung D.W., DiVincenzo D.P.: The entanglement of purification. J. Math. Phys. 43(9), 4286–4298 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. DiVincenzo D.P., Horodecki M., Leung D.W., Smolin J.A., Terhal B.M.: Locking classical correlations in quantum states. Phys. Rev. Lett. 92(6), 067902 (2004)

    Article  ADS  Google Scholar 

  16. Horodecki M., Horodecki P., Horodecki R., Oppenheim J. et al.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71(6), 062307 (2005)

    Article  ADS  MATH  Google Scholar 

  17. Groisman B., Popescu S., Winter A.: Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72(3), 032317 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Luo S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77(2), 022301 (2008)

    Article  ADS  Google Scholar 

  19. Modi K., Paterek T., Son W., Vedral V., Williamson M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104(8), 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zurek W.H.: Quantum discord and Maxwells demons. Phys. Rev. A 67(1), 012320 (2003)

    Article  ADS  Google Scholar 

  21. Rodriguez-Rosario C.A., Modi K., Kuah A.M., Shaji A., Sudarshan E.C.G.: Completely positive maps and classical correlations. J. Phys. A Math. Theor. 41(20), 205301 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Piani M., Horodecki P., Horodecki R.: No-local-broadcasting theorem for multipartite quantum correlations. Phys. Rev. Lett. 100(9), 090502 (2008)

    Article  ADS  Google Scholar 

  23. Luo S.: Quantum discord for two-qubit systems. Phys. Rev. A 77(4), 042303 (2008)

    Article  ADS  Google Scholar 

  24. Werlang T., Souza S., Fanchini F.F., Boas C.J.V.: Robustness of quantum discord to sudden death. Phys. Rev. A 80(2), 024103 (2009)

    Article  ADS  Google Scholar 

  25. Ferraro A., Aolita L., Cavalcanti D., Cucchietti F.M., Acin A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81(5), 052318 (2010)

    Article  ADS  Google Scholar 

  26. Wang B., Xu Z.Y., Chen Z.Q., Feng M.: Non-Markovian effect on the quantum discord. Phys. Rev. A 81(1), 014101 (2010)

    Article  ADS  Google Scholar 

  27. Fanchini F.F., Werlang T., Brasil C.A., Arruda L.G.E., Caldeira A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81(5), 052107 (2010)

    Article  ADS  Google Scholar 

  28. Maziero J., Céleri C.L., Serra R.M., Vedral V.: Classical and quantum correlations under decoherence. Phys. Rev. A 80(4), 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  29. Maziero J., Werlang T., Fanchini F.F., Céleri C.L., Serra R.M.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81(2), 022116 (2010)

    Article  ADS  Google Scholar 

  30. Sarandy M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80(2), 022108 (2009)

    Article  ADS  Google Scholar 

  31. Luo S., Zhang Q.: Observable Correlations in two-qubit states. J. Stat. Phys. 136(1), 165–177 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Xu J.S., Xu X.Y., Li C.F., Zhang C.J. et al.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)

    Google Scholar 

  33. Berrada K., Eleuch H., Hassouni Y.: Asymptotic dynamics of quantum discord in open quantum systems. J. Phys. B At. Mol. Opt. Phys. 44(14), 145503 (2011)

    Article  ADS  Google Scholar 

  34. Schumacher B., Westmoreland M.D.: Quantum mutual information and the one-time pad. Phys. Rev. A 74(4), 042305 (2006)

    Article  ADS  Google Scholar 

  35. Vedral, V.: The elusive source of quantum effectiveness. http://arxiv.org/abs/0906.3656 (2009)

  36. Mazzola L., Piilo J., Maniscalco S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104(20), 200401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  37. Cover T.M., Thomas J.A.: Elements of Information Theory. Wiley, New York (2006)

    MATH  Google Scholar 

  38. Vedral V., Plenio M.B., Rippin M.A., Knight P.L.: Quantifying entanglement. Phys. Rev. Lett. 78(12), 2275–2279 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Vedral V., Plenio M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57(3), 1619–1633 (1998)

    Article  ADS  Google Scholar 

  40. Kraus K.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  41. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  42. Wang Q., Tan M.Y., Liu Y., Zeng H.S.: Entanglement distribution via noisy quantum channels. J. Phys. B At. Mol. Opt. Phys. 42(12), 125503 (2009)

    Article  ADS  Google Scholar 

  43. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245–2248 (1998)

    Article  ADS  MATH  Google Scholar 

  44. López C.E., Romero G., Lastra F. et al.: Sudden birth versus sudden death of entanglement in multipartite systems. Phys. Rev. Lett. 101(8), 080503 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, P., Zhu, J., Qi, Xx. et al. Different dynamics of classical and quantum correlations under decoherence. Quantum Inf Process 11, 1845–1865 (2012). https://doi.org/10.1007/s11128-011-0335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0335-x

Keywords

Navigation