Skip to main content
Log in

Multiple independent quantum states sharing under collaboration of agents in quantum networks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper presents a systematic approach for implementing arbitrary unknown multi-qubit state sharing by multiple agents and its generalization to independent state joint sharing collaborated with multi control agents in quantum deterministic and probabilistic networks. To supervise all independent processes of quantum state sharing, each control agent needs to hold and measure only one particle. This scheme can be used in multi-layer quantum networks to monitor the data flow in secured communication. The performance analysis shows that less qubit resources and less amount of classical communication information are required compared with existing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS National Computer Conference, pp. 313–317. AFIPS Press

  2. Shamir A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cleve R., Gottesman D., Lo H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    Article  ADS  Google Scholar 

  5. Karlsson A., Koashi M., Imoto N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  6. Gordon G., Rigolin G.: Generalized quantum-state sharing. Phys. Rev. A 73, 062316 (2006)

    Article  ADS  Google Scholar 

  7. Zhang Z.J., Man Z.X.: Multi party quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. Yang C.P., Chu S.-I., Han S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70, 022329 (2004)

    Article  ADS  Google Scholar 

  9. Muralidharan S., Panigrahi P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)

    Article  ADS  Google Scholar 

  10. Nie Y.Y., Li Y.H., Liu J.C., Sang M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10, 297–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Qin S.J. et al.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76(6), 062324 (2007)

    Article  ADS  Google Scholar 

  12. Deng F.G. et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72(4), 044301 (2005)

    Article  ADS  Google Scholar 

  13. Deng F.G. et al.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39(3), 459–464 (2006)

    Article  ADS  Google Scholar 

  14. Shi R.H. et al.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Process. 10, 231–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu J., Liu Y.M., Zhang Z.J.: Generalized multiparty quantum single-qutrit-state sharing. Int. J. Theor. Phys. 47(9), 2353–2362 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang T.J., Zhou H.Y., Deng F.G.: Quantum state sharing of an arbitrary m-qudit state with two-qubit entanglements and generalized Bell-state measurements. Physica A 387(18), 4716–4722 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. Zheng S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2004)

    Article  ADS  Google Scholar 

  18. Man Z.X., Xia Y.J., An N.B.: Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states. Eur. Phys. J. D 42, 333 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  19. Zhang W. et al.: Generalized scheme for splitting arbitrary 2-qubit state with three -qubit entangled states. Int. J. Theor. Phys. 48, 2834–2842 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yuan H. et al.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)

    Article  ADS  Google Scholar 

  21. Sheng Y.B., Deng F.G., Zhou H.Y.: Efficient and economic five-party quantum state sharing of an arbitrary m-qubit state. Eur. Phys. J. D 48(2), 279–284 (2008)

    Article  ADS  Google Scholar 

  22. Shi R.H. et al.: Asymmetric five-party quantum state sharing of an arbitrary m-qubit state. Eur. Phys. J. D 57, 287–291 (2010)

    Article  ADS  Google Scholar 

  23. Shi R.H. et al.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10, 53–61 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Brown I.D.K., Stepney S., Sudbery A., Braunstein S.L.: Searching for highly entangled multi-qubit states. J. Phys. A 38, 1119 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Wang X.W. et al.: Scheme for implementing controlled teleportation and dense coding with genuine pentaqubit entangled state in cavity QED. Opt. Commun. 282, 670 (2009)

    Article  ADS  Google Scholar 

  26. Xiu X.M. et al.: Quantum key distribution protocols with six-photon states against collective noise. Opt. Commun. 282, 333 (2009)

    Article  ADS  Google Scholar 

  27. Li X.H. et al.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B. At. Mol. Opt. Phys. 39(8), 1975–1983 (2006)

    Article  ADS  Google Scholar 

  28. Hou K. et al.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states. Quantum Inf. Process. 10, 463–473 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Tittel W., Zbinden H., Gisin N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001)

    Article  ADS  Google Scholar 

  30. Tyc T., Sanders B.C.: How to share a continuous-variable quantum secret by optical interferometry. Phys. Rev. A 65, 042310 (2002)

    Article  ADS  Google Scholar 

  31. Xia Y., Song J., Song H.S.: Quantum state sharing using linear optical elements. Opt. Commun. 281, 4946 (2008)

    Article  ADS  Google Scholar 

  32. Zhou P. et al.: Multiparty quantum secret sharing with pure entangled states and decoy photons. Physica A 381, 164 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. Jiang M. et al.: Faithful teleportation of multi-particle states involving multi spatially remote agents via probabilistic channels. Physica A 390, 760–768 (2011)

    Article  ADS  Google Scholar 

  34. Jiang, M., et al.: Faithful teleportation via multi-particle quantum states in a network with many agents. Quantum Inf. Process. doi:10.1007/s11128-011-0228-z

  35. Muralidharan S., Panigrahi P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  36. Martín a A. et al.: Control-flow integrity principles, implementations, and applications. ACM Trans. Inf. Syst. Secur. 13(1), 4–1440 (2009)

    Google Scholar 

  37. Dong D. et al.: Quantum reinforcement learning. IEEE Trans. Syst. Man Cyber. Part B: Cyber. 38(5), 1207–1220 (2008)

    Article  Google Scholar 

  38. Chudnov, A., Naumann, D.A.: Information flow monitor inlining. In: 23rd IEEE Computer Security Foundations Symposium, pp. 200–214. IEEE press (2010)

  39. Chang, W., Streiff, B., Lin, C.: Improving application security with data flow assertions In: Proceedings of the 15th ACM Conference on Computer and Communications Security, pp. 39–50. ACM press (2008)

  40. Deng F.G., Long G.L., Liu X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  41. Yang C.P., Guo G.C.: Disentanglement-free state of two pairs of two-level atoms. Phys. Rev. A 59, 4217 (1999)

    Article  ADS  Google Scholar 

  42. Hans A., Briegel J.H.: Security proof of quantum cryptography based entirely on entanglement purification. Phys. Rev. A 66, 032302 (2002)

    Article  Google Scholar 

  43. Dong R.F. et al.: Experimental entanglement distillation of mesoscopic quantum states. Nat. Phys. 4, 919–923 (2008)

    Article  Google Scholar 

  44. Hage B. et al.: Preparation of distilled and purified continuous-variable entangled states. Nat. Phys. 4, 915–918 (2008)

    Article  Google Scholar 

  45. Dong D., Petersen I.R.: Sliding mode control of quantum systems. New J. Phys. 11, 105033 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  46. Dür W., Briegel H.J.: Entanglement purification and quantum error correction. Rep. Prog. Phys. 70, 1381 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  47. Smolin J.A., Verstraete F., Winter A.: Entanglement of assistance and multipartite state distillation. Phys. Rev. A 72, 052317 (2005)

    Article  ADS  Google Scholar 

  48. Chen L., Xu A.M., Zhu H.J.: Computation of the geometric measure of entanglement for pure multiqubit states. Phys. Rev. A 82, 032301 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Michael S., Fritzsche F.S.: Evolution equation for entanglement of multiqubit systems. Phys. Rev. A 82, 062327 (2010)

    Article  ADS  Google Scholar 

  50. Heydari H.: Topological quantum gate entanglers for a multi-qubit state. J. Phys. A: Math. Theor. 40, 9877–9882 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoyi Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, M., Dong, D. & Wu, R. Multiple independent quantum states sharing under collaboration of agents in quantum networks. Quantum Inf Process 11, 1829–1844 (2012). https://doi.org/10.1007/s11128-011-0337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0337-8

Keywords

Navigation