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Abstract Entanglement witnesses (EW) allow the detection
of entanglement in a quantum system, from the measure-
ment of some few observables. They do not require the com-
plete determination of the quantum state, which is regarded
as a main advantage. On this paper it is experimentally ana-
lyzed an entanglement witness recently proposed in the con-
text of Nuclear Magnetic Resonance (NMR) experiments to
test it in some Bell-diagonal states. We also propose some
optimal entanglement witness for Bell-diagonal states. The
efficiency of the two types of EW’s are compared to a mea-
sure of entanglement with tomographic cost, the generalized
robustness of entanglement. It is used a GRAPE algorithm
to produce an entangled state which is out of the detection
region of the EW for Bell-diagonal states. Upon relaxation,
the results show that there is a region in which both EW
fails, whereas the generalized robustness still shows entan-
glement, but with the entanglement witness proposed here
with a better performance.
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1 Introduction

Entanglement is one of the central keys for quantum infor-
mation processing, being associated with various puzzling
quantum phenomena, such as Bell’s inequality violation and
quantum teleportation, for example. It is also a main re-
source for the exponential speedup in some quantum algo-
rithms [1]. Therefore, the detection of entanglement is im-
portant. For that, many tools have been developed, one of
these are the entanglement witnesses.

Entanglement witnesses are tools designed to detect en-
tanglement from direct measurements of observables. They
can be used either to detect entanglement in a given state,
or to quantify the entanglement for a specific state or class
of states [2]. The main advantage of the use of entangle-
ment witnesses is the possibility of detection of entangle-
ment without performing Quantum State Tomography,which
can significantly reduce the number of measurements per-
formed in the system, in order to characterize some quantum
effect due to the presence of entanglement.

During the last few years there have been proposals and
experimental implementations of entanglement witnesses for
various different quantum systems, like optical [3] and mag-
netic ones [4,?,?]. Although NMR techniques have been
successfully used to implement quantum protocols [7], like
quantum teleportation [8] and Shor’s [9] algorithm, besides
several other quantum simulations [7], only recently a pro-
posal of EW has been made for NMR quantum information
processing experiments [10]. In this paper it is demonstrated
the implementation of such a EW in a class of states, and it
is also proposed some other entanglement witnesses.

http://arxiv.org/abs/1202.0235v1
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Fig. 1 Quantum circuit for superdense coding. In the first part of the
circuit, the input state|00〉 being transformed in the cat state,|Φ+〉.
After it, the “message” operator is applied, taking|Φ+〉 into one of the
four Bell basis states. The final part of the circuit indicates the mea-
surement in the Bell basis.

2 Theory

Recently, a proposal for an EW has been made for NMR
quantum information processing [10] which uses the super-
dense coding protocol, successfully implemented with NMR
by Fang et al [11]. The circuit for the superdense coding is
given in the Figure 1.

For a pure state, the circuit transmits two classical bits of
information with only one qubit transmitted. The input state
in the superdense coding,|00〉, passes through an ERP gate
[7], becoming the cat state,|Φ+〉 (first part of Figure 1). The
encoded message is then chosen by a “message” operator,
applied only at the first qubit, that transforms the cat state
into one of the four states of the Bell basis (the operatorUxz

at the second part of Figure 1). This operator is given by
X , Z or the productXZ. Then, the first qubit, which was
modified by the message operator is sent to the other person
which has the other qubit of the entangled pair, and a mea-
surement at the Bell basis is performed in each qubit (final
part of the Figure 1). The result of the readouts, measured at
each qubit, is dependent of the “message” operator. By the
knowledge of the sent message, the transmission of the two
classical bits of information with only one qubit transmited
is completed.

In NMR systems one deals with not pure, but mixed
states, due to the large number of molecules in a sample.
Then, it is necessary to consider the above circuit in the con-
text of mixed states. The equilibrium state of a NMR system
containing two qubits can be written in form

ρ = (pI |0〉〈0|+ qI |1〉〈1|)⊗ (pS |0〉〈0|+ qS |1〉〈1|), (1)

where

pi =
1 + ǫi
2

, qi =
1− ǫi
2

, (2)

and the indexesI andS label each of the nuclear spins used
as qubits.

By applying an EPR gate [7] (first part of the circuit in
Figure 1) to this state the output will be a Bell-diagonal state:

ρ1 = pIpS |Φ+〉〈Φ+|+ pIqS |Ψ+〉〈Ψ+|

+ pSqI |Φ−〉〈Φ−|+ pIpS |Ψ−〉〈Ψ−|, (3)

where|Φ+〉, |Ψ+〉, |Φ−〉 and|Ψ−〉 are the states of the Bell
basis. The parameterǫi is the relation between the magnetic
and thermal energies and is typically≈ 10−5.

The spin magnetizations are measured at the end of the
circuit and are proportional to the polarization of the state,ǫ
(see the section 4). They are given by

〈ZI〉 = (−1)zǫI , 〈ZS〉 = (−1)xǫS . (4)

If the variablesx andz, the encripted message, are known,
the NMR implementation of the superdense coding is suc-
cessful.

The statistical condition for success in the NMR imple-
mentation of superdense coding and the condition for the
entanglement of the Bell-diagonal states are the same, and
are given by [10]:

pIpS >
1

2
(5)

This equation can be used to define an entanglement wit-
ness, asF = 1/2 − pIpS . Using the expressions for the
probabilities and those forpi andqi, we have

F =
1

2
− 1

4
(1 + | 〈ZI〉 |)(1 + | 〈ZS〉 |). (6)

The measurements of the magnetizationsZI andZS at the
end of the circuit are equivalent to the measurements ofρ1
(see Fig. 1) in the Bell basis, since

〈ZI〉 = Tr(ρf (ZI ⊗ IS) = Tr(ρ1(XI ⊗XS) ≡ 〈W1〉 , (7)

〈ZS〉 = Tr(ρf (II ⊗ZS) = Tr(ρ1(ZI ⊗ZS) ≡ 〈W2〉 , (8)

which yields:

F =
1

2
− 1

4
(1 + | 〈W1〉 |)(1 + | 〈W2〉 |). (9)

This equation shows explicitly thatF is a measure of the
correlations between the two qubits.

3 Decomposable optimal entanglement witnesses for
NMR

In this section, we propose a set of optimal decomposable
entanglement witnesses, which can detect the entanglement
of states in the vicinity of the Bell states. In relation to the
witnessF , one pays the price of performing just one more
local measurements, in order to have a finer description of
the entanglement, as seen in Fig. 7 (see next section).

The new witnesses are of the form:

W = CII+CxXI ⊗XS +CyYI ⊗YS +CzZI ⊗ZS . (10)
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I XX YY ZZ
|Φ+〉 0.5 -0.5 0.5 -0.5
|Ψ+〉 0.5 -0.5 -0.5 0.5
|Φ−〉 0.5 0.5 -0.5 -0.5
|Ψ−〉 0.5 0.5 0.5 0.5

Table 1 Optimal entanglement witnesses for the Bell states in the form
W = CII+ CxXI ⊗XS + CyYI ⊗ YS + CzZI ⊗ ZS .

To guarantee thatW have a positive expectation value on
all separable statesσ, we have just to impose that the partial
transpose ofW is a positive operator, i.e.,WTA ≥ 0. This
follows from the fact that ifσ is a bipartite separable state,
so is its partial transpose,σTA . ThereforeTr(WσTA) =

Tr(WTAσ) ≥ 0, which shows thatW is a valid entangle-
ment witness.

Now, for a given Bell state|βii〉, an optimal witness in
the form of Eq.(10) is obtained by solving the following
semidefinite program (sdp): [13,14]:

minimize〈βii|W |βii〉

subject to

{

WTA ≥ 0,

W ≤ I.
(11)

The sdp (Eq.11) yields the witnesses in Tab. 1.

4 Experiment

NMR systems have been extensively used to test quantum
information processing protocols. Most of the experiments
deal with entanglement, and therefore the detection of en-
tanglement by direct measurements is desirable. The main
feature of NMR quantum information processing is the ex-
celent control of unitary transformations over qubit states,
provided by the use of radiofrequence pulses, which results
in high fidelity. Our experiment is performed on a liquid-
state enriched carbon-13 Chloroform sample at room tem-
perature in a Varian 500MHz shielded spectrometer. This
sample exhibits two qubits encoded in the1H and13C 1/2-
spin nuclei. The two qubit state is represented by a density
matrix in the high temperature limit, which takes the form
ρAB = I/4 + ǫ∆ρAB, whereǫ = ~ωL/4kBT ≈ 10−5 is the
ratio between the magnetic and thermal energies and∆ρAB

is the deviation matrix [7]. Another form to write the density
matrix of the NMR system is:

ρAB =
1− ǫ

4
I+ ǫρ1, (12)

whereρ1 is a density matrix. The matrixρ1 is directly re-
lated to the NMR observables, sinceM± ∝
Tr {(Ix ± iIy)ρ1}.

By having the two entanglement witness well-defined,
we can look at three classes of NMR states:

Fig. 2 In the righthand side is shown the geometry of the Bell-diagonal
states, where the internal octahedron is the region of the separable
states, with the entangled states being outside this tetrahedron. In the
lefthand side, the Bell-diagonal states detected by F are inthe shad-
owed volume. The empty volume represents the set of Bell-diagonal
states such thatF ≥ 0, i. e., the entangled states that are not detected
by F and the separable ones. The figure on the righthand side is cred-
ited to [12].

– entangled states which can be detected byF ,
– entangled states which can not be detected byF ,
– separable states.

These three classes of states will be considered using
Bell-diagonal states, which are described by the equation:

ρ =
1

4
I+

3
∑

i=1

ciIi ⊗ Ii, (13)

where ci ∈ [−1, 1] and Ii = 2σi, whereσi are the well
known Pauli matrices. For this class of states, the region of
detection of entanglement byF is given in the shadowed
volume of Figure 2. In the figure, the empty volume inside
the lefthand side tetrahedron represents theF -non-detected
states. The separable states being inside the octahedron in
the righthand side figure. The entanglement witnessesF and
W can detect the presence of entanglement not only for
Bell-diagonal states, but for any class of states. In this pa-
per, it will be shown the detection of entanglement by these
two EW on the decoherence process of NMR, the relaxation.

The measurements of the magnetizations have been made
by observing the NMR spectra directly. The NMR spectra
of a two qubit spin-1/2 molecule gives the measurements of
four projectors of the Hilbert-Schmidt space, by combining
the intensities of the two lines of the spectra of each nucleus
[15]. The projectors measured in the first nucleus (with a
very similar equation for the projectors measured in the sec-
ond nucleus) are given by [15]:
(

Tr(ρĨ− ⊗ I)

Tr(ρĨ− ⊗ Z̃)

)

=

(

1 1

1 −1

)(

S(ω1 − ω12)

S(ω1 + ω12)

)

, (14)

whereĨ− = U(X − iY )U † andZ̃ = UZU †, with U being
a preparatory pulse that transforms four desired observables
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Fig. 3 The NMR spectra used to measure the correlation functions
〈XI ⊗XS〉 and 〈ZI ⊗ ZS〉 for each of the implemented states. The
1H spectra is at lefthand side, while the13C spectra is at the righthand
side.(i) the NMR spectra for the|β11〉 state. To illustrate the measure-
ment of the correlation functions,〈XI ⊗XS〉 is measured by looking
at the difference between the normalized line intensities of lines 1 and
2 at the lefthand side.(ii) the NMR spectra for the identity.(iii) the
NMR spectra for the nondetected entangled state.

of the Hilbert-Schmidt space basis intoI− ⊗ I and I− ⊗
Z, the four basis elements observable in the NMR spectra.
S(ω1 − ω12) andS(ω1 + ω12) are the line intensities.

The preparatory pulse that leads the desired basis ele-
ments into the observable ones is a(π/2) pulse in thex or
y directions in one or both spins. For example, to read the
two desired correlation functions,〈Z⊗Z〉 and〈X⊗X〉, the
preparatory pulse necessary is a(π/2)y pulse in the second
qubit, the13C nucleus in this case. These two correlation
functions will be present in the second line of the lefthand
side of Eq. (14), i. e., the difference between the normalized
intensities in the NMR spectra of each nucleus. The corre-
lation function〈XI ⊗XS〉 is observed in the real part of
the1H spectra, while〈ZI ⊗ ZS〉 is observed in the real part
of the 13C spectra. The measurements were obtained after
the phase adjustment, using the equilibrium state as refer-
ence, and the removal of the background signal present at
the NMR spectra.

TheF -detected entangled state which has been prepared
is the |Φ−〉 = 1√

2
(|00〉 − |11〉) state, for which we mea-

sured〈ZI ⊗ ZS〉= 1.00±0.01 and〈XI ⊗XS〉=−1.01±
0.01. These values give usF = −0.51 ± 0.01, in excelent
agreement with the theoretical values, given by〈ZI ⊗ ZS〉
= 1.00, 〈XI ⊗XS〉 = −1.00 andF = −0.50. The Bell-
diagonal state that is not detected byF is given byc1 =
−0.20, c2 = 1.00 andc3 = 0.20. For this state, we measured
〈ZI ⊗ ZS〉 = 0.22± 0.01 and〈XI ⊗XS〉 = −0.17± 0.01,
which give usF = 0.15±0.01. While the theoretical values

are〈ZI ⊗ ZS〉 = 0.20 and〈XI ⊗XS〉 = −0.20, resulting
in F = 0.14. As an example of separable state, we prepared
the identity, which is the state of maximum statistical mix-
ture. For this state we measured〈ZI ⊗ ZS〉 = 0.01 ± 0.01

and〈XI ⊗XS〉 = 0.00 ± 0.01, giving F = 0.25 ± 0.01.
The theoretical expectation values of the correlation func-
tions are null for the identity, withF = 0.250. The fidelity
of the tomographed states were found to be of order of0.99,
0.97 and0.98, respectively. The tomographed states can be
seen in the Figure 4.

Since the entanglement witnessesW need the measure-
ment of one more projector, it is needed another reading
pulse to perform the measurement of〈YI⊗YS〉. In this case,
the(π/2)x in the13C nucleus. The values of〈YI ⊗ YS〉 for
the prepared states are given by0.96±0.01, 0.96±0.01 and
0.00± 0.01, respectively. The theoretical values are, respec-
tively, 1.00, 1.00 and0.00. For the|Φ−〉 state, it is needed to
use the witness given by the values in the third line of the ta-
ble 3, since theF -nondetected entangled state is at the same
region of the tetrahedron (see Fig. 2), the same entanglement
witness is adequate to evaluate the entanglement for this
state. The measured values for the entanglement witnesses
areW|Φ−〉 = −1.01 ± 0.01, for |Φ−〉, W|Φ−〉 = −0.20 ±
0.01, which shows that this state is detected byW . For the
identity,W|Φ−〉 = 0.50 ± 0.01.

The entanglement measured on each state is given by
0.96 ± 0.01, 0.14 + 0.01 and 0.00 ± 0.01, respectively.
The quantification of entanglement have been made using
the generalized robustness of entanglement [19,?,?], a well-
known measure of entanglement based on the notion of “dis-
tance” between an entangled state and the set separable ones
in the Hilbert-Schimdt space. An advantage of this measure
of entanglement is the fact that even for multipartite sys-
tems, it can identify the various types of entaglement that
these systems can exhibit.

The preparation of theF -detected and the identity states
was made by using transfer gates [16], while the entangled
andF -nondetected state was produced using the technique
known as GRAPE [18], which takes the state|00〉 into the
state

√
0.6|00〉 +

√
0.4|11〉. A gradient pulse is applied to

kill the coherences of this state, and the desired state is ob-
tained after the application of a pseudo-EPR gate (see Figure
5). The quantum state tomography employed here was the
variational quantum state tomography proposed by Maciel
et al. [17].

As an extension of the above study, the detection of en-
tanglement byF in the relaxation (decoherence) process, for
the initial state|Φ−〉, was studied. Using the generalized ro-
bustness [19] to quantify the entanglement, it is possible to
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Fig. 4 Quantum state tomographies of the three states. The real parts
are multiplied by a factor of4 to make the experimental errors more
clear, and the imaginary parts are too small in all cases.(i) the tomo-
graphed|Φ−〉 state.(ii) the quantum state tomography of the identity,
the separable state.(iii) the tomographed Bell-diagonal state that is
entangled andF -non-detected state.

Fig. 5 Pulse sequence employed for the preparation of the entangled
nondetected state. The first stage (A) is the passage from thethermal
equilibrium state to the pseudo-pure state|00〉, after the GRAPE pulse
(B), the pseudo-EPR (C), the reading pulse (D) and the measurement.
This is the sequence for the measurement in the13C nucleus. For mea-
surements at the1H nucleus, the pulse sequence is the same, but with
the corresponding lines of both nucleus interchanged. Above each box
that indicates the radiofrequence pulses is the phase of thepulse, with
the angle of rotation below the box.

compare the detection of entanglement by the two methods.
As can be seen in the Figure 6, the EW stops detecting the
entanglement at the timeτc = 0.32 seconds, near the trans-
verse relaxation time of the hydrogen, given by0.31(2) sec-
onds for this sample, while the generalized robustness still
shows the presence of entanglement for a few miliseconds
after this time. But, as it is clear from the figure, the EW has
a large range of detection during the decoherence. Another
feature that comes from the data analysis of detection of en-
tanglement by the generalized robustness and the detection
by the EW is that the entanglement decays with a charac-
teristic time given by the the lowest decoherence time of the

Fig. 6 Detection of entanglement byF and generalized robustness un-
der relaxation. The figure shows explicitly that there are states that are
entangled but not detected byF not only for Bell-diagonal states, since
the transversal relaxation takes the state|Φ−〉 outside the class of the
Bell-diagonal states. This region is localized between thetimes near
to 0.3s until approximately0.4s. At the figures,τR and τW are the
characteristic times of the curves of detection of entanglement by the
generalized robustness and by the EW, respectively. The timeτC is the
approximate time which indicates the end of detection of theentangle-
ment by the EW.

system, at this case, the transverse relaxation time of the13C

nucleus, which is0.11(2) seconds for this sample.

In Fig. 7, we compare the witnessesF andW for the en-
tanglement of the state|Φ−〉 under relaxation. In one hand,
we see thatW is more sensitive thanF and is a betterquan-
tifier, but on the other hand they detect entanglement in the
same region.
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Fig. 7 Detection of entanglement byF andW under relaxation. The
two witnesses detect entanglement in the same region, butW quantifies
entanglement better thanF .

5 Conclusions

In this paper, it has been made the experimental implemen-
tation of the EW proposed by Rahimi et al [10] in the NMR
context. It was shown explicitly the detection of entangle-
ment, by this EW, for two different situations. First, it has
been shown the region of detection by the EW for the class
of Bell-diagonal states, with examples of entangled states
that are detected and are not detected by the EW and a sep-
arable state. It was also shown how is the detection of the
entanglement by the EW in the NMR decoherence proccess,
the transversal relaxation. In this case, it was clearly shown
the presence of a time interval which has a little presence of
entanglement that is not detected by the EW. Instead of the
fact that the EW can not be used to quantify entanglement
for the two classes of states studied in this paper, this EW
can detect entanglement for a large number of states in these
two situations with the application of only one preparatory
pulse to measure the EW. While the complete quantum state
tomography, necessary to calculate entanglement quantifiers
such as the generalized robustness and the concurrence, de-
mands the application of four pulses to reconstruct the den-
sity matrix.

It was also proposed by a simple method other entan-
glement witnesses,W , that are optimal for each region of
the entangled Bell-diagonal states. As could be seen by an
example, these EW can detect the entangled Bell-diagonal
states that are not detected byF . In the context of relax-
ation, the comparison of the two entanglement witnessesW
andF shows that both detects the presence of entanglement
in the same region, butW with the advantage of a better
quantification of entanglement in this region.

A possible next step would be the development of an EW
that is optimall in the context of relaxation for a given state.
Another advance would be the development in the context
of NMR experiments of EW for the detection of multipar-

tite entanglement for systems with larger number of qubits,
where there is a considerable experimental cost to imple-
ment quantum state tomography.
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